Advertisement

EPITHELIAL CELL SURFACE TARGETING USING SYNTHETIC D-AMINO ACID PEPTIDES

  • Thomas C. Sroka
  • Anne E. Cress
  • Kit S. Lam
Chapter
  • 489 Downloads
Part of the Cancer Metastasis – Biology and Treatment book series (CMBT, volume 9)

Abstract

The cell surface of epithelial cancers is known to change dramatically during tumor progression. The alteration of the cancer cell surface is distinct from the normal cell surface from which the cancer is derived and provides an attractive potential target for diagnostic, prognostic or therapeutic intervention. In recent years, it has been appreciated that while a vast majority of tumor cell surfaces become devoid of cell surface markers, a cohort of cell adhesion receptors are persistently expressed on tumor cells throughout the different stages of metastasis. In this chapter, we will focus on the use of combinatorial peptide chemistry techniques with biological approaches to isolate tumor cell adhesion d-amino acid peptides. These peptides when immobilized are capable of supporting tumor cell adhesion but block cell spreading and the downstream activation of focal adhesion kinase or mitogen activated kinase kinase. These results suggest that D-amino acid peptides can be discovered using a cell adhesion assay as a successful screen for bioactive peptides. Further, the immobilized peptides will uncouple cellular adhesion from the downstream signaling events. This strategy can select for cell adhesion peptides capable of both capturing cancer cells and blocking downstream signaling events.

Keywords

Focal Adhesion Kinase Phage Display Cell Spreading PC3N Cell Tumor Cell Adhesion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Chambers, A.F., MacDonald, I.C., Schmidt, E.E., Morris, V.L., and Groom, A.C. (2000) Clinical targets for anti-metastasis therapy. Advances in Cancer Research, 79, 91–121.PubMedCrossRefGoogle Scholar
  2. 2.
    Chambers, A.F., Groom, A.C., and MacDonald, I.C. (2002) Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer, 2, 563–72.PubMedCrossRefGoogle Scholar
  3. 3.
    Rinehart, J., Adjei, A.A., Lorusso, p.M., Waterhouse, D., Hecht, J.R., Natale, R.B., Hamid, O., Varterasian, M., Asbury, p. , Kaldjian, E.p. , Gulyas, S., Mitchell, D.Y., Herrera, R., Sebolt-Leopold, J.S., and Meyer, M.B. (2004) Multicenter phase II study of the oral MEK inhibitor, CI-1040, in patients with advanced non-small-cell lung, breast, colon, and pancreatic cancer. J Clin Oncol, 22, 4456–62.PubMedCrossRefGoogle Scholar
  4. 4.
    Allen, L.F., Sebolt-Leopold, J., and Meyer, M.B. (2003) CI-1040 (PD184352), a targeted signal transduction inhibitor of MEK (MAPKK). Semin Oncol, 30, 105–16.PubMedCrossRefGoogle Scholar
  5. 5.
    Druker, B.J., Talpaz, M., Resta, D.J., Peng, B., Buchdunger, E., Ford, J.M., Lydon, N.B., Kantarjian, H., Capdeville, R., Ohno-Jones, S., and Sawyers, C.L. (2001) Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med, 344, 1031–7.PubMedCrossRefGoogle Scholar
  6. 6.
    Mauro, M.J. and Druker, B.J. (2001) STI571: targeting BCR-ABL as therapy for CML. Oncologist, 6, 233–8.PubMedCrossRefGoogle Scholar
  7. 7.
    White, C.A., Larocca, A., and Grillo-Lopez, A.J. (1999) Anti-CD20 monoclonal antibodies as novel treatments for non-Hodgkin's lymphoma. Pharm. Sci. Technol. Today, 2, 95–101.PubMedCrossRefGoogle Scholar
  8. 8.
    Grillo-Lopez, A.J., White, C.A., Varns, C., Shen, D., Wei, A., McClure, A., and Dallaire, B.K. (1999) Overview of the clinical development of rituximab: first monoclonal antibody approved for the treatment of lymphoma. Semin Oncol, 26, 66–73.PubMedGoogle Scholar
  9. 9.
    Dillman, R.O. (1999) Perceptions of Herceptin: a monoclonal antibody for the treatment of breast cancer. Cancer Biother Radiopharm, 14, 5–10.PubMedCrossRefGoogle Scholar
  10. 10.
    Graziano, C. (1998) HER-2 breast assay, linked to Herceptin, wins FDA's okay. CAP Today, 12, 1, 14–6.Google Scholar
  11. 11.
    Jin, H. and Varner, J. (2004) Integrins: roles in cancer development and as treatment targets. Br J Cancer, 90, 561–5.PubMedCrossRefGoogle Scholar
  12. 12.
    Hynes, R. (2002) Integrins: bidirectional, allosteric signaling machines. Cell, 110, 673–87.PubMedCrossRefGoogle Scholar
  13. 13.
    Hood, J.D. and Cheresh, D.A. (2002) Role of integrins in cell invasion and migration. Nat Rev Cancer, 2, 91–100.PubMedCrossRefGoogle Scholar
  14. 14.
    Hynes, R.O. (2002) Integrins: bidirectional, allosteric signaling machines. Cell, 110, 673–87.PubMedCrossRefGoogle Scholar
  15. 15.
    Cress, A.E., Rabinovitz, I., Zhu, W., and Nagle, R.B. (1995) The alpha 6 beta 1 and alpha 6 beta 4 integrins in human prostate cancer progression. Cancer Metastasis Rev, 14, 219–28.PubMedCrossRefGoogle Scholar
  16. 16.
    Friedrichs, K., Ruiz, P. , Franke, F., Gille, I., Terpe, H.J., and Imhof, B.A. (1995) High expression level of alpha 6 integrin in human breast carcinoma is correlated with reduced survival. Cancer Res, 55, 901–6.PubMedGoogle Scholar
  17. 17.
    Rabinovitz, I. and Mercuric, A.M. (1996) The integrin alpha 6 beta 4 and the biology of carcinoma. Biochem Cell Biol, 74, 811–21.PubMedCrossRefGoogle Scholar
  18. 18.
    Rosendahl, A., Neumann, K., Chaloupka, B., Rothmund, M., and Weinel, R.J. (1993) Expression and distribution of VLA receptors in the pancreas: an immunohistochemical study. Pancreas, 8, 711–8.PubMedCrossRefGoogle Scholar
  19. 19.
    Johansson, J.E., Andren, O., Andersson, S.O., Dickman, p. W., Holmberg, L., Magnuson, A., and Adami, H.O. (2004) Natural history of early, localized prostate cancer. Jama, 291, 2713–9.PubMedCrossRefGoogle Scholar
  20. 20.
    Banyard, J. and Zetter, B.R. (1998) The role of cell motility in prostate cancer. Cancer Metastasis Rev, 17, 449–58.PubMedCrossRefGoogle Scholar
  21. 21.
    Nagle, R.B., Hao, J., Knox, J.D., Dalkin, B.L., Clark, V., and Cress, A.E. (1995) Expression of hemidesmosomal and extracellular matrix proteins by normal and malignant human prostate tissue. Am J Pathol, 146, 1498–507.PubMedGoogle Scholar
  22. 22.
    Fornaro, M., Tallini, G., Bofetiado, C.J., Bosari, S., and Languino, L.R. (1996) Down-regulation of beta 1C integrin, an inhibitor of cell proliferation, in prostate carcinoma. Am J Pathol, 149, 765–73.PubMedGoogle Scholar
  23. 23.
    Perlino, E., Lovecchio, M., Vacca, R.A., Fornaro, M., Moro, L., Ditonno, P. , Battaglia, M., Selvaggi, F.P. , Mastropasqua, M.G., Bufo, P. , and Languino, L.R. (2000) Regulation of mRNA and protein levels of betal integrin variants in human prostate carcinoma. Am J Pathol, 157, 1727–34.PubMedGoogle Scholar
  24. 24.
    Putz, E., Witter, K., Offner, S., Stosiek, P. , Zippelius, A., Johnson, J., Zahn, R., Riethmuller, G., and Pantel, K. (1999) Phenotypic characteristics of cell lines derived from disseminated cancer cells in bone marrow of patients with solid epithelial tumors: establishment of working models for human micrometastases. Cancer Res, 59, 241–8.PubMedGoogle Scholar
  25. 25.
    Liu, R., Enstrom, A.M., and Lam, K.S. (2003) Combinatorial peptide library methods for immunobiology research. Exp Hematol, 31, 11–30.PubMedCrossRefGoogle Scholar
  26. 26.
    Lam, K.S., Salmon, S.E., Hersh, E.M., Hruby, V.J., Kazmierski, W.M., and Knapp, R.J. (1991) A new type of synthetic peptide library for identifying ligand-binding activity. Nature, 354, 82–4.PubMedCrossRefGoogle Scholar
  27. 27.
    Lam, K.S., Lebl, M., and Krchnak, V. (1997) The “One-Bead-One-Compound” Combinatorial Library Method. Chem Rev, 97, 411–448.PubMedCrossRefGoogle Scholar
  28. 28.
    Lam, K.S., Liu, R., Miyamoto, S., Lehman, A.L., and Tuscano, J.M. (2003) Applications of one-bead one-compound combinatorial libraries and chemical microarrays in signal transduction research. Ace Chem Res, 36, 370–7.CrossRefGoogle Scholar
  29. 29.
    Wang, X., Peng, L., Liu, R., Xu, B., and Lam, K.S. (2005) Applications of topologically segregated bilayer beads in ‘one-bead one-compound’ combinatorial libraries. J Pept Res, 65, 130–8.PubMedCrossRefGoogle Scholar
  30. 30.
    Cwirla, S.E., Peters, E.A., Barrett, R.W., and Dower, W.J. (1990) Peptides on phage: a vast library of peptides for identifying ligands. Proc Natl Acad Sci USA, 87, 6378–82.PubMedCrossRefGoogle Scholar
  31. 31.
    Devlin, J.J., Panganiban, L.C., and Devlin, p. E. (1990) Random peptide libraries: a source of specific protein binding molecules. Science, 249, 404–6.PubMedCrossRefGoogle Scholar
  32. 32.
    Rodi, D.J., Makowski, L., and Kay, B.K. (2002) One from column A and two from column B: the benefits of phage display in molecular-recognition studies. Curr Opin ChemBiol, 6, 92–6.CrossRefGoogle Scholar
  33. 33.
    Trepel, M., Arap, W., and Pasqualini, R. (2002) In vivo phage display and vascular heterogeneity: implications for targeted medicine. Curr Opin Chem Biol, 6, 399–404.PubMedCrossRefGoogle Scholar
  34. 34.
    Parmley, S.F. and Smith, G.P. (1988) Antibody-selectable filamentous fd phage vectors: affinity purification of target genes. Gene, 73, 305–18.PubMedCrossRefGoogle Scholar
  35. 35.
    Fukuda, M.N., Ohyama, C., Lowitz, K., Matsuo, O., Pasqualini, R., Ruoslahti, E., and Fukuda, M. (2000) A peptide mimic of E-selectin ligand inhibits sialyl Lewis X-dependent lung colonization of tumor cells. Cancer Res, 60, 450–6.PubMedGoogle Scholar
  36. 36.
    Romanov, V.I., Durand, D.B., and Petrenko, V.A. (2001) Phage display selection of peptides that affect prostate carcinoma cells attachment and invasion. Prostate, 47, 239–51.PubMedCrossRefGoogle Scholar
  37. 37.
    Zhang, J., Spring, H., and Schwab, M. (2001) Neuroblastoma tumor cell-binding peptides identified through random peptide phage display. Cancer Lett, 171, 153–64.PubMedCrossRefGoogle Scholar
  38. 38.
    Kolonin, M., Pasqualini, R., and Arap, W. (2001) Molecular addresses in blood vessels as targets for therapy. Curr Opin Chem Biol, 5, 308–13.PubMedCrossRefGoogle Scholar
  39. 39.
    Murayama, O., Nishida, H., and Sekiguchi, K. (1996) Novel peptide ligands for integrin alpha 6 beta 1 selected from a phage display library. J Biochem (Tokyo), 120, 445–51.Google Scholar
  40. 40.
    Koivunen, E., Wang, B., and Ruoslahti, E. (1995) Phage libraries displaying cyclic peptides with different ring sizes: ligand specificities of the RGD-directed integrins. Biotechnology (N Y), 13, 265–70.CrossRefGoogle Scholar
  41. 41.
    Assa-Munt, N., Jia, X., Laakkonen, P. , and Ruoslahti, E. (2001) Solution structures and integrin binding activities of an RGD peptide with two isomers. Biochemistry, 40, 2373–8.PubMedCrossRefGoogle Scholar
  42. 42.
    Houghten, R.A., Pinilla, C., Blondelle, S.E., Appel, J.R., Dooley, C.T., and Cuervo, J.H. (1991) Generation and use of synthetic peptide combinatorial libraries for basic research and drug discovery. Nature, 354, 84–6.PubMedCrossRefGoogle Scholar
  43. 43.
    Furka, A., Sebestyen, F., Asgedom, M., and Dibo, G. (1991) General method for rapid synthesis of multicomponent peptide mixtures. Int J Pept Protein Res, 37, 487–93.PubMedCrossRefGoogle Scholar
  44. 44.
    Pennington, M.E., Lam, K.S., and Cress, A.E. (1996) The use of a combinatorial library method to isolate human tumor cell adhesion peptides. Mol Divers, 2, 19–28.PubMedCrossRefGoogle Scholar
  45. 45.
    Hamamoto, K., Kida, Y., Zhang, Y., Shimizu, T., and Kuwano, K. (2002) Antimicrobial activity and stability to proteolysis of small linear cationic peptides with D-amino acid substitutions. Microbiol Immunol, 46, 741–9.PubMedGoogle Scholar
  46. 46.
    Van Regenmortel, M.H. and Muller, S. (1998) D-peptides as immunogens and diagnostic reagents. Curr Opin Biotechnol, 9, 377–82.PubMedCrossRefGoogle Scholar
  47. 47.
    Aina, O.H., Marik, J., Liu, R., Lau, D.H., and Lam, K.S. (2005) Identification of novel targeting peptides for human ovarian cancer cells using “one-bead one-compound” combinatorial libraries. Mol Cancer Ther, 4, 806–13.PubMedCrossRefGoogle Scholar
  48. 48.
    Lau, D.H., Guo, L.L, Liu, R.W., Song, A.M., Shao, C.K., and Lam, K.S. (2002) Identifying peptide ligands for cell surface receptors using cell-growth-on-bead-assay and one-bead-one-compound combinatorial library. Biotechnology Letters, 24, 497–500.CrossRefGoogle Scholar
  49. 49.
    Park S.I., R.M., Vikstrom, B., Amro, N., Song, L., Xu, B., and Lam K.S. (2002) The use of one-bead one-compound combinatorial library method to identify peptide ligands for Alpha4Betal integrin receptor in non-Hodgkin's lymphoma. Letters in Peptide Science, 8, 171–178.Google Scholar
  50. 50.
    DeRoock, I.E., Pennington, M.E., Sroka, T.C., Lam, K.S., Bowden, G.T., Bair, E.L., and Cress, A.E. (2001) Synthetic peptides inhibit adhesion of human tumor cells to extracellular matrix proteins. Cancer Res, 61, 3308–13.PubMedGoogle Scholar
  51. 51.
    Rabinovitz, I., Nagle, R.B., and Cress, A.E. (1995) Integrin alpha 6 expression in human prostate carcinoma cells is associated with a migratory and invasive phenotype in vitro and in vivo. Clin Exp Metastasis, 13, 481–91.PubMedCrossRefGoogle Scholar
  52. 52.
    Arthur, W.T., Noren, N.K., and Burridge, K. (2002) Regulation of Rho family GTPases by cell-cell and cell-matrix adhesion. Biol Res, 35, 239–46.PubMedCrossRefGoogle Scholar
  53. 53.
    Panetti, T.S. (2002) Tyrosine phosphorylation of paxillin, FAK, and p130CAS: effects on cell spreading and migration. Front Biosci, 7, d143–50.PubMedGoogle Scholar
  54. 54.
    Slack-Davis, J.K., Eblen, S.T., Zecevic, M., Boerner, S.A., Tarcsafalvi, A., Diaz, H.B., Marshall, M.S., Weber, M.J., Parsons, J.T., and Catling, A.D. (2003) PAK1 phosphorylation of MEK1 regulates fibronectin-stimulated MAPK activation. J Cell Biol, 162, 281–91.PubMedCrossRefGoogle Scholar
  55. 55.
    Kerr, J.S., Slee, A.M., and Mousa, S.A. (2002) The alpha v integrin antagonists as novel anticancer agents: an update. Expert Opin Investig Drugs, 11, 1765–74.PubMedCrossRefGoogle Scholar
  56. 56.
    Tucker, G.C. (2003) Alpha v integrin inhibitors and cancer therapy. Curr Opin Investig Drugs, 4, 722–31.PubMedGoogle Scholar
  57. 57.
    Gutheil, J.C., Campbell, T.N., Pierce, p. R., Watkins, J.D., Huse, W.D., Bodkin, D.J., and Cheresh, D.A. (2000) Targeted antiangiogenic therapy for cancer using Vitaxin: a humanized monoclonal antibody to the integrin alphavbeta3. Clin Cancer Res, 6, 3056–61.PubMedGoogle Scholar
  58. 58.
    Mikecz, K. (2000) Vitaxin applied molecular evolution. Curr Opin Investig Drugs, 1, 199–203.PubMedGoogle Scholar
  59. 59.
    Patel, S.R., Jenkins, J., Papadopolous, N., Burgess, M.A., Plager, C., Gutterman, J., and Benjamin, R.S. (2001) Pilot study of vitaxin–an angiogenesis inhibitor-in patients with advanced leiomyosarcomas. Cancer, 92, 1347–8.PubMedCrossRefGoogle Scholar
  60. 60.
    Posey, J.A., Khazaeli, M.B., DelGrosso, A., Saleh, M.N., Lin, C.Y., Huse, W., and LoBuglio, A.F. (2001) A pilot trial of Vitaxin, a humanized anti-vitronectin receptor (anti alpha v beta 3) antibody in patients with metastatic cancer. Cancer Biother Radiopharm, 16, 125–32.PubMedCrossRefGoogle Scholar
  61. 61.
    Smith, J.W. (2003) Cilengitide Merck. Curr Opin Investig Drugs, 4, 741–5.PubMedGoogle Scholar
  62. 62.
    Eskens, F.A., Dumez, H., Hoekstra, R., Perschl, A., Brindley, C., Bottcher, S., Wynendaele, W., Drevs, J., Verweij, J., and van Oosterom, A.T. (2003) Phase I and pharmacokinetic study of continuous twice weekly intravenous administration of Cilengitide (EMD 121974), a novel inhibitor of the integrins alphavbeta3 and alphavbeta5 in patients with advanced solid tumours. Eur J Cancer, 39, 917–26.PubMedCrossRefGoogle Scholar
  63. 63.
    Burke, p. A., DeNardo, S.J., Miers, L.A., Lamborn, K.R., Matzku, S., and DeNardo, G.L. (2002) Cilengitide targeting of alpha(v)beta(3) integrin receptor synergizes with radioimmunotherapy to increase efficacy and apoptosis in breast cancer xenografts. Cancer Res, 62, 4263–72.PubMedGoogle Scholar
  64. 64.
    Raguse, J.D., Gath, H.J., Bier, J., Riess, H., and Oettle, H. (2004) Cilengitide (EMD 121974) arrests the growth of a heavily pretreated highly vascularised head and neck tumour. Oral Oncol, 40, 228–30.PubMedCrossRefGoogle Scholar
  65. 65.
    Reinmuth, N., Liu, W., Ahmad, S.A., Fan, F., Stoeltzing, O., Parikh, A.A., Bucana, C.D., Gallick, G.E., Nickols, M.A., Westlin, W.F., and Ellis, L.M. (2003) Alphavbeta3 integrin antagonist S247 decreases colon cancer metastasis and angiogenesis and improves survival in mice. Cancer Res, 63, 2079–87.PubMedGoogle Scholar
  66. 66.
    Stoeltzing, O., Liu, W., Reinmuth, N., Fan, F., Parry, G.C., Parikh, A.A., McCarty, M.F., Bucana, C.D., Mazar, A.P. , and Ellis, L.M. (2003) Inhibition of integrin alpha5betal function with a small peptide (ATN-161) plus continuous 5-FU infusion reduces colorectal liver metastases and improves survival in mice. Int J Cancer, 104, 496–503.PubMedCrossRefGoogle Scholar
  67. 67.
    Sroka, Pennington, M.E., and Cress, A.E. (2005) Synthetic D-Amino Acid Peptide Inhibits Tumor Cell Motility on Laminin-5. Carcinogenesis, In Press.Google Scholar
  68. 68.
    Mahato, R.I., Narang, A.S., Thoma, L., and Miller, D.D. (2003) Emerging trends in oral delivery of peptide and protein drugs. Crit Rev Ther Drug Carrier Syst, 20, 153–214.PubMedCrossRefGoogle Scholar
  69. 69.
    Hamman, J.H., Enslin, G.M., and Kotze, A.F. (2005) Oral delivery of Peptide drugs : barriers and developments. BioDrugs, 19, 165–77.PubMedCrossRefGoogle Scholar
  70. 70.
    Kumagai, H., Tajima, M., Ueno, Y., Giga-Hama, Y., and Ohba, M. (1991) Effect of cyclic RGD peptide on cell adhesion and tumor metastasis. Biochem Biophys Res Commun, 177, 74–82.PubMedCrossRefGoogle Scholar
  71. 71.
    Kaneda, Y., Yamamoto, Y., Okada, N., Tsutsuml, Y., Nakagawa, S., Kakiuch, M., Maeda, M., Kawasaki, K., and Mayumi, T. (1997) Antimetastatic effect of synthetic Glu-Ile-Leu-Asp-Val peptide derivatives containing D-amino acids. Anticancer Drugs, 8, 702–7.PubMedCrossRefGoogle Scholar
  72. 72.
    Yamamoto, Y., Tsutsumi, Y., and Mayumi, T. (2002) Molecular design of bioconjugated cell adhesion peptide with a water-soluble polymeric modifier for enhancement of antimetastatic effect. Curr Drug Targets, 3, 123–30.PubMedCrossRefGoogle Scholar
  73. 73.
    Fujii, H., Nishikawa, N., Komazawa, H., Suzuki, M., Kojima, M., Itoh, I., Obata, A., Ayukawa, K., Azuma, I., and Saiki, I. (1998) A new pseudo-peptide of Arg-Gly-Asp (RGD) with inhibitory effect on tumor metastasis and enzymatic degradation of extracellular matrix. Clin Exp Metastasis, 16, 94–104.PubMedCrossRefGoogle Scholar
  74. 74.
    Dechantsreiter, M.A., Flanker, E., Matha, B., Lohof, E., Holzemann, G., Jonczyk, A., Goodman, S.L., and Kessler, H. (1999) N-Methylated cyclic RGD peptides as highly active and selective alpha(V)beta(3) integrin antagonists. J Med Chem, 42, 3033–40.PubMedCrossRefGoogle Scholar
  75. 75.
    Tran, N.L., Nagle, R.B., Cress, A.E., and Heimark, R.L. (1999) N-Cadherin expression in human prostate carcinoma cell lines. An epithelial-mesenchymal transformation mediating adhesion with Stromal cells. Am J Pathol, 155, 787–98.PubMedGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Thomas C. Sroka
    • 1
  • Anne E. Cress
    • 1
  • Kit S. Lam
    • 2
  1. 1.Arizona Cancer CenterUniversity of ArizonaTucsonUSA
  2. 2.Davis Cancer Center, Division of Hematology/Oncology and the Department of Internal MedicineUniversity of CaliforniaDavisUSA

Personalised recommendations