Advertisement

CHANGING EXTRACELLULAR MATRIX LIGANDS DURING METASTASIS

  • Elisabeth L. Bair
  • Raymond B. Nagle
Chapter
  • 497 Downloads
Part of the Cancer Metastasis – Biology and Treatment book series (CMBT, volume 9)

Abstract

Cellular homeostasis is achieved by cells continuously sending and receiving information, through cell-cell contacts, signals from the surrounding extracellular matrix (ECM), or from soluble hormones and growth factors. During cancer progression, these normal signals may be altered in a variety of ways forcing extracellular and intracellular changes to occur that will favor metastasis. Altering ECM ligands is a major mechanism by which transformed cells metastasize. One way in which ECM ligands change is through alterations in ECM composition. Another mechanism is through proteolysis of ECM proteins causing the release of growth factors or cryptic ECM peptides called matrikines. In this chapter, we will discuss changes that occur in ECM and examine how these changes are important for successful cancer metastasis.

Keywords

Proteolytic Enzyme Extracellular Environment Epidermolysis Bullosa Curr Opin Cell Biol Semin Cancer Biol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Timpl, R. and Aumailley, M. Biochemistry of basement membranes. Adv Nephrol Necker Hosp, 18: 59–76, 1989.PubMedGoogle Scholar
  2. 2.
    Erickson, A.C. and Couchman, J.R. Still more complexity in mammalian basement membranes. J Histochem Cytochem, 48: 1291–1306 2000.PubMedGoogle Scholar
  3. 3.
    Timpl, R. and Brown, J.C. Supramolecular assembly of basement membranes. Bioessays, 18: 123–132 1996.PubMedCrossRefGoogle Scholar
  4. 4.
    Timpl, R., Macromolecular organization of basement membranes. Curr Opin Cell Biol, 8: 618–624 1996.PubMedCrossRefGoogle Scholar
  5. 5.
    Yurchenco, P.D. and O'Rear, J.J. Basal lamina assembly. Curr Opin Cell Biol, 6: 674–681 1994.PubMedCrossRefGoogle Scholar
  6. 6.
    Cheng, Y.S., Champliaud, M.F., Burgeson, R.E., Marinkovich, M.P. , and Yurchenco, P.D. Self-assembly of laminin isoforms. J Biol Chem, 272: 31525–31532 1997.PubMedCrossRefGoogle Scholar
  7. 7.
    Aumailley, M., Bruckner-Tuderman, L., Carter, W.G., Deutzmann, R., Edgar, D., Ekblom, P. , Engel, J., Engvall, E., Hohenester, E., Jones, J.C., Kleinman, H.K., Marinkovich, M.P. , Martin, G.R., Mayer, U., Meneguzzi, G., Miner, J.H., Miyazaki, K., Patarroyo, M., Paulsson, M., Quaranta, V., Sanes, J.R., Sasaki, T., Sekiguchi, K., Sorokin, L.M., Talts, J.F., Tryggvason, K., Uitto, J., Virtanen, I., von der Mark, K., Wewer, U.M., Yamada, Y., and Yurchenco, P.D. A simplified laminin nomenclature. Matrix Biol, 24: 326–332 2005.PubMedCrossRefGoogle Scholar
  8. 8.
    Colognato, H. and Yurchenco, P.D. Form and function: the laminin family of heterotrimers. Dev Dyn, 218: 213–234 2000.PubMedCrossRefGoogle Scholar
  9. 9.
    Libby, R.T., Champliaud, M.F., Claudepierre, T., Xu, Y., Gibbons, E.P. , Koch, M., Burgeson, R.E., Hunter, D.D., and Brunken, W.J. Laminin expression in adult and developing retinae: evidence of two novel CNS laminins. J Neurosci, 20: 6517–6528 2000.PubMedGoogle Scholar
  10. 10.
    Schwarzbauer, J.E., Fibronectin: from gene to protein. Curr Opin Cell Biol, 3: 786–791 1991.PubMedCrossRefGoogle Scholar
  11. 11.
    Chan, D., Lamande, S.R., McQuillan, D.J., and Bateman, J.F. In vitro expression analysis of collagen biosynthesis and assembly. J Biochem Biophys Methods, 36: 11–29 1997.PubMedCrossRefGoogle Scholar
  12. 12.
    Iozzo, R.V. and Cohen, I. Altered proteoglycan gene expression and the tumor stroma. Experientia, 49: 447–455 1993.PubMedCrossRefGoogle Scholar
  13. 13.
    Aberdam, D., Galliano, M.F., Vailly, J., Pulkkinen, L., Bonifas, J., Christiano, A.M., Tryggvason, K., Uitto, J., Epstein, E.H., Ortonne, J.P. Jr., and et al., Herlitz's junctional epidermolysis bullosa is linked to mutations in the gene (LAMC2) for the gamma 2 subunit of nicein/kalinin (LAMININ-5). Nat Genet, 6: 299–304 1994.PubMedCrossRefGoogle Scholar
  14. 14.
    Nakano, A., Pfendner, E., Hashimoto, I., and Uitto, J. Herlitz junctional epidermolysis bullosa: novel and recurrent mutations in the LAMB3 gene and the population carrier frequency. J Invest Dermatol, 115: 493–498 2000.PubMedCrossRefGoogle Scholar
  15. 15.
    Pulkkinen, L., Gerecke, D.R., Christiano, A.M., Wagman, D.W., Burgeson, R.E., and Uitto, J. Cloning of the beta 3 chain gene (LAMB3) of human laminin 5, a candidate gene in junctional epidermolysis bullosa. Genomics, 25: 192–198 1995.PubMedCrossRefGoogle Scholar
  16. 16.
    Schwartz, M.A., Schaller, M.D., and Ginsberg, M.H., Integrins: emerging paradigms of signal transduction. Annu Rev Cell Dev Biol, 11: 549–599 1995.PubMedCrossRefGoogle Scholar
  17. 17.
    Wary, K.K., Mariotti, A., Zurzolo, C., and Giancotti, F.G. A requirement for caveolin-1 and associated kinase Fyn in integrin signaling and anchorage-dependent cell growth. Cell, 94: 625–634 1998.PubMedCrossRefGoogle Scholar
  18. 18.
    Clark, E.A. and Brugge, J.S. Integrins and signal transduction pathways: the road taken. Science, 268: 233–239 1995.PubMedCrossRefGoogle Scholar
  19. 19.
    Giancotti, F.G. and Ruoslahti, E. Integrin signaling. Science, 285: 1028–1032 1999.PubMedCrossRefGoogle Scholar
  20. 20.
    LaFlamme, S.E. and Auer, K.L. Integrin signaling. Semin Cancer Biol, 7: 111–118 1996.PubMedCrossRefGoogle Scholar
  21. 21.
    Frisch, S.M. and Ruoslahti, E. Integrins and anoikis. Curr Opin Cell Biol, 9: 701–706 1997.PubMedCrossRefGoogle Scholar
  22. 22.
    Barcellos-Hoff, M.H., Aggeler, J., Ram, T.G., and Bissell, M.J. Functional differentiation and alveolar morphogenesis of primary mammary cultures on reconstituted basement membrane. Development, 105: 223–235 1989.PubMedGoogle Scholar
  23. 23.
    Gumbiner, B.M., Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell, 84: 345–357 1996.PubMedCrossRefGoogle Scholar
  24. 24.
    Carey, D.J., Todd, M.S., and Rafferty, C.M. Schwann cell myelination: induction by exogenous basement membrane-like extracellular matrix. J Cell Biol, 102: 2254–2263 1986.PubMedCrossRefGoogle Scholar
  25. 25.
    Bissell, D.M., Arenson, D.M., Maher, J.J., and Roll, F.J. Support of cultured hepatocytes by a laminin-rich gel. Evidence for a functionally significant subendothelial matrix in normal rat liver. J Clin Invest, 79: 801–812 1987.PubMedCrossRefGoogle Scholar
  26. 26.
    Schuetz, E.G., Li, D., Omiecinski, C.J., Muller-Eberhard, U., Kleinman, H.K., Elswick, B., and Guzelian, P.S. Regulation of gene expression in adult rat hepatocytes cultured on a basement membrane matrix. J Cell Physiol, 134: 309–323 1988.PubMedCrossRefGoogle Scholar
  27. 27.
    Kubota, Y., Kleinman, H.K., Martin, G.R., and Lawley, T.J. Role of laminin and basement membrane in the morphological differentiation of human endothelial cells into capillary-like structures. J Cell Biol, 107: 1589–1598 1988.PubMedCrossRefGoogle Scholar
  28. 28.
    Tenniswood, M.P. , Guenette, R.S., Lakins, J., Mooibroek, M., Wong, P. , and Welsh, J.E. Active cell death in hormone-dependent tissues. Cancer Metastasis Rev, 11: 197–220 1992.PubMedCrossRefGoogle Scholar
  29. 29.
    Lochter, A. and Bissell, M.J. An odyssey from breast to bone: multi-step control of mammary metastases and osteolysis by matrix metalloproteinases. Apmis, 107: 128–136 1999.PubMedCrossRefGoogle Scholar
  30. 30.
    Cress, A.E., Rabinovitz, I., Zhu, W., and Nagle, R.B. The alpha 6 beta 1 and alpha 6 beta 4 integrins in human prostate cancer progression. Cancer Metastasis Rev, 14: 219–228 1995.PubMedCrossRefGoogle Scholar
  31. 31.
    Tani, T., Karttunen, T., Kiviluoto, T., Kivilaakso, E., Burgeson, R.E., Sipponen, P. , and Virtanen, I. Alpha 6 beta 4 integrin and newly deposited laminin-1 and laminin-5 form the adhesion mechanism of gastric carcinoma. Continuous expression of laminins but not that of collagen VII is preserved in invasive parts of the carcinomas: implications for acquisition of the invading phenotype. Am J Pathol, 149: 781–793 1996.PubMedGoogle Scholar
  32. 32.
    Nagle, R.B., Knox, J.D., Wolf, C., Bowden, G.T., and Cress, A.E. Adhesion molecules, extracellular matrix, and proteases in prostate carcinoma. J Cell Biochem Suppl, 19: 232–237 1994.PubMedGoogle Scholar
  33. 33.
    Horgan, K., Jones, D.L., and Mansel, R.E. Mitogenicity of human fibroblasts in vivo for human breast cancer cells. Br J Surg, 74: 227–229 1987.PubMedGoogle Scholar
  34. 34.
    Ronnov-Jessen, L. and Petersen, O.W. Induction of alpha-smooth muscle actin by transforming growth factor-beta 1 in quiescent human breast gland fibroblasts. Implications for myofibroblast generation in breast neoplasia. Lab Invest, 68: 696–707 1993.PubMedGoogle Scholar
  35. 35.
    Ellis, M.J., Singer, C., Hornby, A., Rasmussen, A., and Cullen, K.J. Insulin-like growth factor mediated stromal-epithelial interactions in human breast cancer. Breast Cancer Res Treat, 31: 249–261 1994.PubMedCrossRefGoogle Scholar
  36. 36.
    Bronzert, D.A., Pantazis, P. , Antoniades, H.N., Kasid, A., Davidson, N., Dickson, R.B., and Lippman, M.E. Synthesis and secretion of platelet-derived growth factor by human breast cancer cell lines. Proc Natl Acad Sci USA, 84: 5763–5767 1987.PubMedCrossRefGoogle Scholar
  37. 37.
    Shao, Z.M., Nguyen, M., and Barsky, S.H. Human breast carcinoma desmoplasia is PDGF initiated. Oncogene, 19: 4337–4345 2000.PubMedCrossRefGoogle Scholar
  38. 38.
    Ziober, B.L., Lin, C.S., and Kramer, R.H. Laminin-binding integrins in tumor progression and metastasis. Semin Cancer Biol, 7: 119–128 1996.PubMedCrossRefGoogle Scholar
  39. 39.
    Peters, B.P. , Hartle, R.J., Krzesicki, R.F., Kroll, T.G., Perini, F., Balun, J.E., Goldstein, I.J., and Ruddon, R.W. The biosynthesis, processing, and secretion of laminin by human choriocarcinoma cells. J Biol Chem, 260: 14732–14742 1985.PubMedGoogle Scholar
  40. 40.
    Frenette, G.P. , Carey, T.E., Varani, J., Schwartz, D.R., Fligiel, S.E., Ruddon, R.W., and Peters, B.P. Biosynthesis and secretion of laminin and laminin-associated glycoproteins by nonmalignant and malignant human keratinocytes: comparison of cell lines from primary and secondary tumors in the same patient. Cancer Res, 48: 5193–5202 1988.PubMedGoogle Scholar
  41. 41.
    Pyke, C., Romer, J., Kallunki, P. , Lund, L.R., Ralfkiaer, E., Dano, K., and Tryggvason, K. The gamma 2 chain of kalinin/laminin 5 is preferentially expressed in invading malignant cells in human cancers. Am J Pathol, 145: 782–791 1994.PubMedGoogle Scholar
  42. 42.
    Akiyama, S.K., Olden, K., and Yamada, K.M. Fibronectin and integrins in invasion and metastasis. Cancer Metastasis Rev, 14: 173–189 1995.PubMedCrossRefGoogle Scholar
  43. 43.
    Hao, J., Yang, Y. McDaniel, K.M., Dalkin, B.L., Cress, A.E., and Nagle, R.B. Differential expression of laminin 5 (alpha 3 beta 3 gamma 2) by human malignant and normal prostate. Am J Pathol, 149: 1341–1349 1996.PubMedGoogle Scholar
  44. 44.
    Katayama, M., Sanzen, N., Funakoshi, A., and Sekiguchi, K. Laminin gamma2-chain fragment in the circulation: a prognostic indicator of epithelial tumor invasion Cancer Res, 63: 222–229 2003.PubMedGoogle Scholar
  45. 45.
    Takeichi, M., Cadherin cell adhesion receptors as a morphogenetic regulator. Science, 251: 1451–1455 1991.PubMedCrossRefGoogle Scholar
  46. 46.
    Ruoslahti, E., The Walter Herbert Lecture. Control of cell motility and tumour invasion by extracellular matrix interactions. Br J Cancer, 66: 239–242 1992.PubMedGoogle Scholar
  47. 47.
    Mizejewski, G.J., Role of integrins in cancer: survey of expression patterns. Proc Soc Exp Biol Med, 222: 124–138 1999.PubMedCrossRefGoogle Scholar
  48. 48.
    Westermarck, J. and Kahari, V.M. Regulation of matrix metalloproteinase expression in tumor invasion FASEB J, 13: 781–792 1999.PubMedGoogle Scholar
  49. 49.
    Yu, Q. and Stamenkovic, I. Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis. Genes Dev, 14: 163–176 2000.PubMedGoogle Scholar
  50. 50.
    Primakoff, P. and Myles, D.G. The ADAM gene family: surface proteins with adhesion and protease activity. Trends Genet, 16: 83–87 2000.PubMedCrossRefGoogle Scholar
  51. 51.
    Holmbeck, K., Bianco, P. , Caterina, J., Yamada, S., Kromer, M., Kuznetsov, S.A., Mankani, M., Robey, P.G., Poole, A.R., Pidoux, I., Ward, J.M., and Birkedal-Hansen, H. MTl-MMP-deficient mice develop dwarfism, osteopenia, arthritis, and connective tissue disease due to inadequate collagen turnover. Cell, 99: 81–92 1999.PubMedCrossRefGoogle Scholar
  52. 52.
    Bullard, K.M., Lund, L., Mudgett, J.S., Mellin, T.N., Hunt, T.K., Murphy, B., Ronan, J., Werb, Z., and Banda, M.J. Impaired wound contraction in stromelysin-1-deficient mice. Ann Surg, 230: 260–265 1999.PubMedCrossRefGoogle Scholar
  53. 53.
    Beare, A.H., O'Kane, S., Krane, S.M., and Ferguson, M.W. Severely impaired wound healing in the collagenase-resistant mouse. J Invest Dermatol, 120: 153–163 2003.PubMedCrossRefGoogle Scholar
  54. 54.
    Grant, M.B., Caballero, S., Bush, D.M., and Spoerri, P.E. Fibronectin fragments modulate human retinal capillary cell proliferation and migration. Diabetes, 47: 1335–1340 1998.PubMedGoogle Scholar
  55. 55.
    Ruoslahti, E. and Yamaguchi, Y. Proteoglycans as modulators of growth factor activities. Cell, 64: 867–869 1991.PubMedCrossRefGoogle Scholar
  56. 56.
    Masson, R., Lefebvre, O., Noel, A., Fahime, M.E., Chenard, M.P. , Wendling, C., Kebers, F., LeMeur, M., Dierich, A., Foidart, J.M., Basset, P. , and Rio, M.C. In vivo evidence that the stromelysin-3 metalloproteinase contributes in a paracrine manner to epithelial cell malignancy. J Cell Biol, 140: 1535–1541 1998.PubMedCrossRefGoogle Scholar
  57. 57.
    Flaumenhaft, R., Moscatelli, D., and Rifkin, D.B. Heparin and heparan sulfate increase the radius of diffusion and action of basic fibroblast growth factor. J Cell Biol, 111: 1651–1659 1990.PubMedCrossRefGoogle Scholar
  58. 58.
    Vlodavsky, I., Bar-Shavit, R., Ishai-Michaeli, R., Bashkin, P. , and Fuks, Z. Extracellular sequestration and release of fibroblast growth factor: a regulatory mechanism? Trends Biochem Sci, 16: 268–271 1991.PubMedCrossRefGoogle Scholar
  59. 59.
    Vlodavsky, I. and Friedmann, Y. Molecular properties and involvement of heparanase in cancer metastasis and angiogenesis. J Clin Invest, 108: 341–347 2001.PubMedCrossRefGoogle Scholar
  60. 60.
    Imai, K., Hiramatsu, A., Fukushima, D., Pierschbacher, M.D., and Okada, Y. Degradation of decorin by matrix metalloproteinases: identification of the cleavage sites, kinetic analyses and transforming growth factor-beta l release. Biochem J, 322 ( Pt 3): 809–814 1997.PubMedGoogle Scholar
  61. 61.
    Gavrilovic, J., Moens, G., Thiery, J.P. , and Jouanneau, J. Expression of transfected transforming growth factor alpha induces a motile fibroblast-like phenotype with extracellular matrix-degrading potential in a rat bladder carcinoma cell line. Cell Regul, 1: 1003–1014 1990.PubMedGoogle Scholar
  62. 62.
    Jouanneau, J., Gavrilovic, J., Caruelle, D., Jaye, M., Moens, G., Caruelle, J.P. , and Thiery, J.P. Secreted or nonsecreted forms of acidic fibroblast growth factor produced by transfected epithelial cells influence cell morphology, motility, and invasive potential. Proc Natl Acad Sci USA, 88: 2893–2897 1991.PubMedCrossRefGoogle Scholar
  63. 63.
    Wernert, N., Gilles, F., Fafeur, V., Bouali, F., Raes, M.B., Pyke, C., Dupressoir, T., Seitz, G., Vandenbunder, B., and Stehelin, D. Stromal expression of c-Ets 1 transcription factor correlates with tumor invasion. Cancer Res, 54: 5683–5688 1994.PubMedGoogle Scholar
  64. 64.
    Maquart, F.X., Simeon, A., Pasco, S., and Monboisse, J.C. [Regulation of cell activity by the extracellular matrix: the concept of matrikines]. J Soc Biol, 193: 423–428 1999.PubMedGoogle Scholar
  65. 65.
    Swindle, C.S., Tran, K.T., Johnson, T.D., Banerjee, P. , Mayes, A.M., Griffith, L., and Wells, A. Epidermal growth factor (EGF)-like repeats of human tenascin-C as ligands for EGF receptor. J Cell Biol, 154: 459–468 2001.PubMedCrossRefGoogle Scholar
  66. 66.
    Shrivastava, A., Radziejewski, C., Campbell, E., Kovac, L., McGlynn, M., Ryan, T.E., Davis, S., Goldfarb, M.P. , Glass, D.J., Lemke, G., and Yancopoulos, G.D. An orphan receptor tyrosine kinase family whose members serve as nonintegrin collagen receptors. Mol Cell, 1: 25–34 1997.PubMedCrossRefGoogle Scholar
  67. 67.
    Santra, M., Reed, C.C., and Iozzo, R.V. Decorin binds to a narrow region of the epidermal growth factor (EGF) receptor, partially overlapping but distinct from the EGF-binding epitope. J Biol Chem, 277: 35671–35681 2002.PubMedCrossRefGoogle Scholar
  68. 68.
    Giannelli, G., Falk-Marzillier, J., Schiraldi, O., Stetler-Stevenson, W.G., and Quaranta, V. Induction of cell migration by matrix metalloprotease-2 cleavage of laminin-5. Science, 277: 225–228 1997.PubMedCrossRefGoogle Scholar
  69. 69.
    Byers, L.J., Osborne, J.L., Carson, L.F., Carter, J.R., Haney, A.F., Weinberg, J.B., and Ramakrishnan, S. Increased levels of laminin in ascitic fluid of patients with ovarian cancer. Cancer Lett, 88: 67–72 1995.PubMedCrossRefGoogle Scholar
  70. 70.
    Panayotou, G., End, P. , Aumailley, M., Timpl, R., and Engel, J. Domains of laminin with growth-factor activity. Cell, 56: 93–101 1989.PubMedCrossRefGoogle Scholar
  71. 71.
    Schenk, S., Hintermann, E., Bilban, M., Koshikawa, N., Hojilla, C., Khokha, R., and Quaranta, V. Binding to EGF receptor of a laminin-5 EGF-like fragment liberated during MMP-dependent mammary gland involution J Cell Biol, 161: 197–209 2003.PubMedCrossRefGoogle Scholar
  72. 72.
    Udayakumar, T.S., Chen, M.L., Bair, E.L., Von Bredow, D.C., Cress, A.E., Nagle, R.B., and Bowden, G.T. Membrane type-1-matrix metalloproteinase expressed by prostate carcinoma cells cleaves human laminin-5 beta3 chain and induces cell migration Cancer Res, 63: 2292–2299 2003.PubMedGoogle Scholar
  73. 73.
    Bair, E.L., Chen, M.L., McDaniel, K., Sekiguchi, K., Cress, A.E., Nagle, R.B., and Bowden, G.T. Membrane type 1 matrix metalloprotease cleaves laminin-10 and promotes prostate cancer cell migration. Neoplasia, 7: 380–389 2005.PubMedCrossRefGoogle Scholar
  74. 74.
    Chelberg, M.K., McCarthy, J.B., Skubitz, A.P. , Furcht, L.T., and Tsilibary E.C. Characterization of a synthetic peptide from type IV collagen that promotes melanoma cell adhesion, spreading, and motility. J Cell Biol, 111: 261–270 1990.PubMedCrossRefGoogle Scholar
  75. 75.
    Sudhakar, A., Sugimoto, H., Yang, C., Lively, J., Zeisberg, M., and Kalluri, R. Human tumstatin and human endostatin exhibit distinct antiangiogenic activities mediated by alpha v beta 3 and alpha 5 beta 1 integrins. Proc Natl Acad Sci USA, 100: 4766–4771 2003.PubMedCrossRefGoogle Scholar
  76. 76.
    Schenk, S. and Quaranta, V. Tales from the crypt[ic] sites of the extracellular matrix. Trends Cell Biol, 13: 366–375 2003.PubMedCrossRefGoogle Scholar
  77. 77.
    Folkman, J. The role of angiogenesis in tumor growth. Semin Cancer Biol, 3: 65–71 1992.PubMedGoogle Scholar
  78. 78.
    Woodhouse, E.C., Chuaqui, R.F., and Liotta, L.A. General mechanisms of metastasis. Cancer, 80: 1529–1537 1997.PubMedCrossRefGoogle Scholar
  79. 79.
    Fidler, I.J., Critical determinants of cancer metastasis: rationale for therapy. Cancer Chemother Pharmacol, 43 Suppl: S3–10 1999.PubMedCrossRefGoogle Scholar
  80. 80.
    Chambers, A.F., Naumov, G.N., Varghese, H.J., Nadkarni, K.V., MacDonald, I.C., and Groom, A.C. Critical steps in hematogenous metastasis: an overview. Surg Oncol Clin N Am, 10: 243–255, 2001.PubMedGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Elisabeth L. Bair
    • 1
  • Raymond B. Nagle
    • 1
  1. 1.Arizona Cancer CenterUniversity of ArizonaTucsonUSA

Personalised recommendations