Skip to main content

Selection Selection on mitochondrial DNA and the Neanderthal problem

  • Chapter

Part of the Vertebrate Paleobiology and Paleoanthropology book series (VERT)

At present, the direct evidence for Neanderthal genetic variation and gene phylogeny is limited to the control region of the mitochondrial DNA (mtDNA). Neanderthal mtDNA sequences are divergent from those of recent humans. This fact, when coupled with the assumptions of selective neutrality and a recently expanding human population, argues for the complete and utter extinction of Neanderthals without living issue. But an alternative hypothesis is that human mtDNA has recently undergone an episode of positive selection, or a “selective sweep.” Five converging lines of evidence suggest that mtDNA has undergone recent positive selection: (1) mtDNA variants in living humans are associated with life history and metabolic traits that changed dramatically during recent human evolution; (2) Statistical tests show that the distribution of human mtDNA variation is clearly inconsistent with neutrality; (3) Nuclear genomic variation is not consistent with a single recent population expansion as necessary to explain human mtDNA variation; (4) A neutral mtDNA necessitates a population replacement to explain its pattern of variation, but many autosomal and X chromosomal loci show strong phylogeographic or genealogical evidence for the survival of archaic human gene lineages and therefore reject population replacement; and (5) Anatomical and archaeological evidence shows some degree of anatomical and behavioral continuity between Upper Paleolithic Neanderthals and later Europeans and likewise reject population replacement. The hypothesis of positive selection on mtDNA is in accord with recent estimates of genome-wide rates of selection and is contradicted by no known evidence. Molecular and comparative evidence further suggests that the current pattern of human mtDNA variation represents only the most recent episode of positive selection among many during human evolution. Selection on mtDNA cannot prove that other Neanderthal genomic lineages survived, although such survival may be suggested by other anatomical and genetic evidence. Nevertheless, the substantial probability of such selection renders Neanderthal mtDNA variation phylogenetically uninformative.

Keywords

  • Positive selection
  • adaptation
  • demographic inference
  • molecular evolution
  • selective sweep

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4020-5121-0_12
  • Chapter length: 18 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   99.00
Price excludes VAT (USA)
  • ISBN: 978-1-4020-5121-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   129.00
Price excludes VAT (USA)
Hardcover Book
USD   129.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ambrose, S.H., 1998. Late Pleistocene human population bottlenecks, volcanic winter and differentiation of modern humans. J. Hum. Evol. 34, 623–652.

    CrossRef  Google Scholar 

  • Arnason, U., Gullberg, A., Janke, A., Xu, X., 1996. Pattern and timing of evolutionary divergences among hominoids based on analyses of complete mtDNAs. J. Mol. Evol. 43, 650–661.

    CrossRef  Google Scholar 

  • Baird, D.M., Coleman, J., Rosser, Z.H., Royle, N.J., 2000. High levels of sequence polymorphism and linkage disequilibrium at the telomere of 12q: implications for telomere biology and human evolution. Am. J. Hum. Genet. 66, 235–250.

    CrossRef  Google Scholar 

  • Bar-Yosef, O., 2002. The Upper Paleolithic revolution. Ann. Rev. Anthropol. 31, 363–393.

    CrossRef  Google Scholar 

  • Biraben, J.-N., 1979. Essai sur l’evolution du nombre des hommes. Population 1, 13–25.

    CrossRef  Google Scholar 

  • Biraben, J.-N., 2003. Lévolution du nombre des hommes. Population et Sociétés 394, 1–4.

    Google Scholar 

  • Bräuer, G., 1984. A craniological appoach to the origin of anatomically modern Homo sapiens in Africa and implications for the appearance of modern Europeans. In: Smith, F.H., Spencer, F. (Eds.), The Origins of Modern Humans: A World Survey of the Fossil Evidence. Alan R. Liss, New York, pp. 327–410.

    Google Scholar 

  • Bräuer, G., Stringer, C., 1997. Models, polarization, and perspectives on modern human origins. In: Clark, G.A., Willermet, C.M. (Eds.), Conceptual Issues in Modern Human Origins Research. Aldine de Gruyter, New York, pp. 191–201.

    Google Scholar 

  • Bräuer, G., Collard, M., Stringer, C., 2004. On the reliability of recent tests of the Out of Africa hypothesis for modern human origins. Anat. Rec. 279A, 701–707.

    CrossRef  Google Scholar 

  • Cann, R.L., Stoneking, M., Wilson, A.C., 1987. Mitochondrial DNA and human evolution. Nature 325, 31–36.

    CrossRef  Google Scholar 

  • Caramelli, D., Lalueza-Fox, C., Vernesi, C., Lari, M., Casoli, A., Mallegni, F., Chiarelli, B., Dupanloup, I., Bertranpetit, J., Barbujani, G., Bertorelle, G., 2003. Evidence for a genetic discontinuity between Neandertals and 24,000-year-old anatomically modern Europeans. Proc. Natl. Acad. Sci. U.S.A. 100, 6593–6597.

    CrossRef  Google Scholar 

  • Caspari, R., Lee, S.-H., 2004. Older age becomes common late in human evolution. Proc. Natl. Acad. Sci. U.S.A. 101, 10,895–10,900.

    CrossRef  Google Scholar 

  • Coale, A.J., 1974. The history of the human population. Sci. Am. 231, 40–52.

    CrossRef  Google Scholar 

  • Currat, M., Excoffier, L., 2004. Modern humans did not admix with Neanderthals during their range expansion into Europe. PLoS Biol. 2, e421.

    CrossRef  Google Scholar 

  • Duarte, C., Maurício, J., Pettitt, P.B., Souto, P., Trinkaus, E., van der Plicht, H., Zilhão, J., 1999. The early Upper Paleolithic human skeleton from the Abrigo do Lagar Velho (Portugal) and modern human emergence in Iberia. Proc. Natl. Acad. Sci. U.S.A. 96, 7604–7609.

    CrossRef  Google Scholar 

  • Enard, W., Przeworski, M., Fisher, S.E., Lai, C.S., Wiebe, V., Kitano, T., Monasco, A.P., Pääbo, S., 2002. Molecular evolution of FOXP2, a gene involved in speech and language. Nature 418, 869–872.

    CrossRef  Google Scholar 

  • Eswaran, V., Harpending, H., Rogers, A.R., 2005. Genomics refutes an exclusively African origin of humans. J. Hum. Evol. 49, 1–154.

    CrossRef  Google Scholar 

  • Fay, J.C., Wu, C.-I., 1999. A human population bottleneck can account for the discordance between patterns of mitochondrial versus nuclear DNA variation. Mol. Biol. Evol. 16, 1003–1005.

    CrossRef  Google Scholar 

  • Fay, J.C., Wyckoff, G.J., Wu, C.-I., 2001. Positive and negative selection on the human genome. Genetics 158, 1227–1254.

    Google Scholar 

  • Foley, R.A., 1998. Genes, evolution and diversity: yet another look at the problem of modern human origins. Evol. Anthropol. 6, 191–193.

    CrossRef  Google Scholar 

  • Frayer, D.W., 1993. Evolution at the European edge: Neanderthal and Upper Paleolithic relationships. Préhistoire Européenne 2, 9–69.

    Google Scholar 

  • Frayer, D.W., Wolpoff, M.H., Smith, F.H., Thorne, A.G., Pope, G.G., 1993. The fossil evidence for modern human origins. Am. Anthropol. 95, 14–50.

    CrossRef  Google Scholar 

  • Garrigan, D., Mobasher, Z., Severson, T., Wilder, J.A., Hammer, M.F., 2005. Evidence for archaic Asian ancestry on the human X chromosome. Mol. Biol. Evol. 22, 189–192.

    CrossRef  Google Scholar 

  • Gutiérrez, G., Sánchez, D., Marín, A., 2002. A reanalysis of the ancient mitochondrial DNA sequences recovered from Neandertal bones. Mol. Biol. Evol. 19, 1359–1366.

    CrossRef  Google Scholar 

  • Haak, W., Forster, P., Bramanti, B., Matsumura, S., Brandt, G., Tänzer, M., Villems, R., Renfrew, C., Gronenborn, D., Alt, K.W., Burger, J., 2005. Ancient DNA from the first European farmers in 7500-year-old Neolithic sites. Science 310, 1016–1018.

    Google Scholar 

  • Hardy, J., Pittman, A., Myers, A., Gwinn-Hardy, K., Fung, H.C., de Silva, R., Hutton, M., Duckworth, J., 2005. Evidence suggesting that Homo neanderthalensis contributed the H2 MAPT haplotype to Homo sapiens. Biochem. Soc. Trans. 33, 582–585.

    CrossRef  Google Scholar 

  • Harpending, H., Rogers, A., 2000. Genetic perspectives on human origins and differentiation. Ann. Rev. Genomics Hum. Genet. 1, 361–385.

    CrossRef  Google Scholar 

  • Harpending, H.C., Sherry, S.T., Rogers, A.R., Stoneking, M., 1993. The genetic structure of ancient human populations. Curr. Anthropol. 34, 483–496.

    CrossRef  Google Scholar 

  • Harpending, H.C., Batzer, M.A., Gurven, M., Jorde, L.B., Rogers, A.R., Sherry, S.T., 1998. Genetic traces of ancient demography. Proc. Natl. Acad. Sci. U.S.A. 95, 1961–1967.

    CrossRef  Google Scholar 

  • Hawks, J., Wolpoff, M.H., 2001. Paleoanthropology and the population genetics of ancient genes. Am. J. Phys. Anthropol. 114, 269–272.

    CrossRef  Google Scholar 

  • Hawks, J., Hunley, K., Lee, S.-H., Wolpoff, M.H., 2000a. Bottlenecks and Pleistocene human evolution. Mol. Biol. Evol. 17, 2–22.

    CrossRef  Google Scholar 

  • Hawks, J., Oh, S., Hunley, K., Dobson, S., Cabana, G., Dayalu, P., Wolpoff, M.H., 2000b. An Australasian test of the recent African origin theory using the WLH-50 calvarium. J. Hum. Evol. 39, 1–22.

    CrossRef  Google Scholar 

  • Hawks, J.D., 1999. The evolution of human population size: A synthesis of fossil, archaeological, and genetic data. Ph.D. Dissertation, University of Michigan, Ann Arbor, MI.

    Google Scholar 

  • Howell, N., Kubacka, I., Mackey, D., 1996. How rapidly does the human mitochondrial genome evolve? Am. J. Hum. Genet. 59, 501–509.

    Google Scholar 

  • Howells, W.W., 1942. Fossil man and the origin of races. Am. Anthropol. 44, 182–193.

    CrossRef  Google Scholar 

  • Jorde, L.B., Bamshad, M., Rogers, A.R., 1998. Using mitochondrial and nuclear DNA markers to reconstruct human evolution. BioEssays 20, 126–136.

    CrossRef  Google Scholar 

  • Kimmel, M., Chakraborty, R., King, J., Bamshad, M., Watkins, W., Jorde, L.B., 1997. Signatures of population expansion in microsatellite repeat data. Genetics 148, 1921–1930.

    Google Scholar 

  • Kivisild, T., Shen, P., Wall, D.P., Do, B., Sung, R., Davis, K.K., Passarino, G., Underhill, P.A., Scharfe, C., Torroni, A., Scozzari, R., Modiano, D., Coppa, A., deKnjiff, P., Feldman, M.W., Cavalli-Sforza, L.L., Oefner, P.J., 2006. The role of selection in the evolution of human mitochondrial genomes. Genetics 172, 373–387.

    CrossRef  Google Scholar 

  • Klein, R., 1999. The Human Career: Human Biological and Cultural Origins. 2nd Edition. University of Chicago Press, Chicago.

    Google Scholar 

  • Klein, R., Edgar, B., 2002. The Dawn of Human Culture. John Wiley and Sons, New York.

    Google Scholar 

  • Knight, A., 2003. The phylogenetic relationship of Neandertal and modern human mitochondrial DNAs based on informative nucleotide sites. J. Hum. Evol. 44, 627–632.

    CrossRef  Google Scholar 

  • Kreitman, M., 2000. Methods to detect selection in populations with applications to the human. Ann. Rev. Genom. Hum. Genet. 1, 539–559.

    CrossRef  Google Scholar 

  • Krings, M., Stone, A., Schmitz, R.W., Krainitzid, H., Stoneking, M., Pääbo, S., 1997. Neandertal DNA sequences and the origin of modern humans. Cell 90, 1–20.

    CrossRef  Google Scholar 

  • Krings, M., Geisert, H., Schmitz, R.W., Krainitzki, S.P., 1999. DNA sequence of the mitochondrial hypervariable region ii from the Neandertal type specimen. Proc. Natl. Acad. Sci. U.S.A. 96, 5581–5585.

    CrossRef  Google Scholar 

  • Krings, M., Capelli, C., Tachentacher, F., Geisert, H., Meyer, S., von Haeseler, A., Grossschmidt, K., Possnert, G., Paunovic, M., Pääbo, S., 2000. A view of neandertal genetic diversity. Nat. Genet. 26, 144–146.

    CrossRef  Google Scholar 

  • Lahr, M.M., 1996. The Evolution of Modern Human Diversity: A Study of Cranial Variation.

    Google Scholar 

  • Lowell, B.B., Shulman, G.I., 2005. Mitochondrial dysfunction and Type 2 diabetes. Science 307, 384–397.

    CrossRef  Google Scholar 

  • Macaulay, V., Hill, C., Achilli, A., Rengo, C., Clarke, D., Meehan, W., Blackburn, J., Semino, O., Scozzari, R., Cruciani, F., Taha, A., Shaari, N.K., Raha, J.M., Ismail, P., Zainuddin, Z., Goodwin, W., Bulbeck, D., Bandelt, H.-J., Oppenheimer, S., Torroni, A., Richards, M., 2005. Single, rapid coastal settlement of Asia revealed by analysis of complete mitochondrial genomes. Science 308, 1034–1036.

    CrossRef  Google Scholar 

  • Manderscheid, E.J., Rogers, A.R., 1996. Genetic admixture in the Late Pleistocene. Am. J. Phys. Anthropol. 100, 1–5.

    CrossRef  Google Scholar 

  • Marth, G.T., Czabarka, E., Murvai, J., Sherry, S.T., 2004. The allele frequency spectrum in genomewide human variation data reveals signals of differential demographic history in three large world populations. Genetics 166, 351–372.

    CrossRef  Google Scholar 

  • McDonald, J.H., Kreitman, M., 1991. Adaptive protein evolution at the Adh locus in Drosophila. Nature 351, 652–654.

    CrossRef  Google Scholar 

  • Merriwether, D., Clark, A.G., Ballinger, S.W., Schurr, T.G., Soodyall, H., Jenkins, T., Sherry, S.T., Wallace, D.C., 1991. The structure of human mitochondrial DNA variation. J. Mol. Evol. 33, 543–555.

    CrossRef  Google Scholar 

  • Mishmar, D., Ruiz-Pesini, E., Golik, P., Macaulay, V., Clark, A.G., Hosseini, S., Brandon, M., Easley, K., Chen, E., Brown, M.D., Sukernik, R.I., Olckers, A., Wallace, D.C., 2003. Natural selection shaped regional mtDNA variation in humans. Proc. Natl. Acad. Sci. U.S.A. 100, 171–176.

    CrossRef  Google Scholar 

  • Niemi, A.-K., Majamaa, K., 2005. Mitochondrial DNA and ACTN3 genotypes in Finnish elite endurance and sprint athletes. Eur. J. Hum. Genet. 13, 965–969.

    CrossRef  Google Scholar 

  • Niemi, A.-K., Moilanen, J.S., Tanaka, M., Hervonen, A., Hurme, M., Lehtimäki, T., Arai, Y., Hirose, N., Majamaa, K., 2005. A combination of three common inherited itochondrialDNApolymorphisms promotes longevity in Finnish and Japanese subjects. Eur. J. Hum. Genet. 13, 166–170.

    CrossRef  Google Scholar 

  • Nordborg, M., 1998. On the probability of Neanderthal ancestry. Am. J. Hum. Genet. 63, 1237–1240.

    CrossRef  Google Scholar 

  • Pearson, O., 2003. Has the combination of genetic and fossil evidence solved the riddle of modern human origins? Evol. Anthropol. 13, 145–159.

    CrossRef  Google Scholar 

  • Protsch, R.R., 1975. The absolute dating of Upper Pleistocene sub-Saharan fossil hominids and their place in human evolution. J. Hum. Evol. 4, 297–322.

    CrossRef  Google Scholar 

  • Przeworski, M., Hudson, R.R., DiRienzo, A., 2000. Adjusting the focus on human variation. Trends Genet. 16, 296–302.

    CrossRef  Google Scholar 

  • Ptak, S.E., Przeworski, M., 2002. Evidence for population growth in humans is confounded by fine-scale population structure. Trends Genet. 18, 559–563.

    CrossRef  Google Scholar 

  • Richards, M., 2003. The Neolithic invasion of Europe. Ann. Rev. Anthropol. 32, 135–162.

    CrossRef  Google Scholar 

  • Ruiz-Pesini, E., Mishmar, D., Brandon, M., Procaccio, V., Wallace, D.C., 2004. Effects of purifying and adaptive selection on regional variation in human mtDNA. Science 303, 223–226.

    CrossRef  Google Scholar 

  • Serre, D., Langaney, A., Chech, M., Teschler-Nicola, M., Paunovic, M., Mennecier, P., Hofreiter, M., Possnert, G., Pääbo, S., 2004. No evidence of Neandertal mtDNA contribution to early modern humans. PLoS Biol. 2, 313–317.

    CrossRef  Google Scholar 

  • Sherry, S.T., Rogers, A.R., Harpending, H., Soodyall, H., Jenkins, T., Stoneking, M., 1994. Mismatch distribution of mtDNA reveal recent human population expansions. Hum. Biol. 66, 761–775.

    Google Scholar 

  • Soffer, O., 2004. Recovering perishable technologies through use wear on tools: Preliminary evidence for Upper Paleolithic weaving and net making. Curr. Anthropol. 45, 407–413.

    CrossRef  Google Scholar 

  • Spuhler, J.N., 1989. Evolution of mitochondrial DNA in human and other organisms. Am. J. Hum. Biol. 1, 509–528.

    CrossRef  Google Scholar 

  • Stefansson, H., Helgason, A., Steinthorsdottir, G.T.V., Masson, G., Bernard, J., Baker, A., Jonasdottir, A., Ingason, A., Gudnadottir, V.G., Desnica, N., Hicks, A., Gylfason, A., Gudbjartsson, D.F., Jonsdottir, G.M., Sainz, J., Agnarsson, K., Birgisdottir, B., Ghosh, S., Olafsdottir, A., Cazier, J.-B., Kristjansson, K., Frigge, M.L., Thorgeirsson, T.E., Gulcher, J.R., Kong, A., Stefansson, K., 2005. A common inversion under selection in Europeans. Nat. Genet. 37, 129–137.

    CrossRef  Google Scholar 

  • Stiner, M.C., Munro, N.D., Surovell, T.A., 2000. The tortoise and the hare: Small-game use, the broad-spectrum revolution, and Paleolithic demography. Curr. Anthropol. 41, 39–73.

    CrossRef  Google Scholar 

  • Stringer, C., 2002. Modern human origins: Progress and prospects. Phil. Trans. R. Soc. Lond. B 357, 563–579.

    CrossRef  Google Scholar 

  • Stringer, C.B., Andrews, P., 1988. Genetic and fossil evidence for the origin of modern humans. Science 239, 1263–1268.

    CrossRef  Google Scholar 

  • Stringer, C.B., Bräuer, G., 1994. Methods, misreading and bias. Am. Anthropol. 96, 416–424.

    CrossRef  Google Scholar 

  • Tattersall, I., Schwartz, J.H., 1999. Hominids and hybrids: The place of Neanderthals in human evolution. Proc. Natl. Acad. Sci. U.S.A. 96, 7117–7119.

    CrossRef  Google Scholar 

  • Templeton, A., 1993. The “Eve” hypothesis: a genetic critique and reanalysis. Am. Anthropol. 95, 51–72.

    CrossRef  Google Scholar 

  • Templeton, A.R., 2002. Out of Africa again and again. Nature 416, 45–51.

    CrossRef  Google Scholar 

  • Tishkoff, S.A., Dietzsch, E., Seed, W., Pakstis, A.J., Kidd, J.R., Cheung, K., Bonné-Tamir, B., Santachiara-Benerecetti, A.S., Moral, P., Krings, M., Pääbo, S., Watson, E., Risch, N., Jenkins, T., Kidd, K.K., 1996. Global patterns of disequilibrium at the CD4 locus and modern human origins. Science 271, 1380–1387.

    CrossRef  Google Scholar 

  • Trinkaus, E., 2005. Early modern humans. Ann. Rev. Anthropol. 34, 207–230.

    CrossRef  Google Scholar 

  • Trinkaus, E., Milota, S., Rodrigo, R., Mircea, G., Moldovan, O., 2003. Early modern human cranial remains from the Peştera cu Oase, Romania. J. Hum. Evol. 45, 245–253.

    CrossRef  Google Scholar 

  • Vallender, E.J., Lahn, B.T., 2004. Positive selection on the human genome. Hum. Mol. Genet. 13, R245–R254.

    CrossRef  Google Scholar 

  • Vigilant, L., Stoneking, M., Harpending, H., Hawkes, K., Wilson, A.C., 1991. African populations and the evolution of human mitochondrial DNA. Science 253, 1503–1507.

    CrossRef  Google Scholar 

  • Wall, J.D., 2000. Detecting ancient admixture in humans using sequence polymorphism data. Genetics 154, 1271–1279.

    Google Scholar 

  • Wallace, D.C., 2005a. The mitochondrial genome in human adaptive radiation and disease: on the road to therapeutics and performance enhancement. Gene 354, 169–180.

    CrossRef  Google Scholar 

  • Wallace, D.C., 2005b. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: A dawn for evolutionary medicine. Ann. Rev. Genet. 39, 359–407.

    CrossRef  Google Scholar 

  • Wallace, D.C., Lott, M.T., 2002. Mitochondrial genes in degenerative diseases, cancer, and aging. In: Rimoin, D.L., Connor, J.M., Pyeritz, R.E., Korf, B.R. (Eds.), Emery and Rimoin’s Principles and Practice of Medical. Churchill Livingstone, London, pp. 299–409.

    Google Scholar 

  • Wallace, D.C., Brown, M.D., Lott, M.T., 1999. Mitochondrial DNA variation in human evolution and disease. Gene 238, 211–230.

    CrossRef  Google Scholar 

  • Wallace, D.C., Lott, M.T., Brown, M.D., Kerstann, K., 2001. Mitochondria and neuro-opthalmological diseases. In: Scriver, C.R., Beaudet, A.L., Sly, W.S., Valle, D. (Eds.), The Metabolic and Molecular Basis of Inherited Disease, Vol. 2. McGraw-Hill, New York, pp. 2425–2512.

    Google Scholar 

  • Weaver, T.D., Roseman, C.C., 2005. Ancient DNA, late Neandertal survival, and modern-human-Neandertal genetic admixture. Curr. Anthropol. 46, 677–683.

    CrossRef  Google Scholar 

  • Williamson, S.H., Hernandez, R., Fledel-Alon, A., Zhu, L., Nielsen, R., Bustamante, C.D., 2005. Simultaneous inference of selection and population growth from patterns of variation in the human genome. Proc. Natl. Acad. Sci. U.S.A. 102, 7882–7887.

    CrossRef  Google Scholar 

  • Wills, C., 1995. When did Eve live? An evolutionary detective story. Evolution 49, 593–607.

    CrossRef  Google Scholar 

  • Wilson, A.C., Cann, R.L., 1992. The recent African genesis of humans. Sci. Am. 266, 68–73.

    Google Scholar 

  • Wise, C.A., Sraml, M., Rubinsztein, D.C., Easteal, S., 1997. Comparative nuclear and mitochondrial genome diversity in humans and chimpanzees. Mol. Biol. Evol. 14, 707–716.

    CrossRef  Google Scholar 

  • Wise, C.A., Sraml, M., Easteal, S., 1998. Departure from neutrality at the mitochondrial NADH dehydrogenase subunit 2 gene in humans, but not in chimpanzees. Genetics 148, 409–421.

    Google Scholar 

  • Wolpoff, M.H., Hawks, J., Frayer, D.W., Hunley, K., 2001. Modern human ancestry at the peripheries: a test of the replacement theory. Science 291, 293–297.

    CrossRef  Google Scholar 

  • Yellen, J.E., Brooks, A., Cornelissen, E., Mehlman, M., Stewart, K., 1995. A Middle Stone Age worked bone industry from Katanda, Upper Semiliki Valley, Zaire. Science 268, 553–556.

    CrossRef  Google Scholar 

  • Zhivotovsky, L.A., Bennett, L., Bowcock, A.M., Feldman, M.W., 2000. Human population expansion and microsatellite variation. Mol. Biol. Evol. 17, 757–767.

    CrossRef  Google Scholar 

  • Zhivotovsky, L.A., Rosenberg, N.A., Feldman, M.W., 2003. Features of evolution and expansion of modern humans, inferred from genomewide microsatellite markers. Am. J. Hum. Genet. 72, 1171–1186.

    CrossRef  Google Scholar 

  • Zhu, X., Smith, M.A., Perry, G., Aliev, G., 2004. Mitochondrial failures in Alzheimer’s disease. Am. J. Alzheimer’s Dis. Other Dementias 19, 345–352.

    CrossRef  Google Scholar 

  • Zischler, H., Geisert, H., von Haeseler, A., Pääbo, S., 1995. A nuclear “fossil” of the mitochondrial D-loop and the origin of modern humans. Nature 378, 489–492.

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Hawks, J. (2006). Selection Selection on mitochondrial DNA and the Neanderthal problem. In: Hublin, JJ., Harvati, K., Harrison, T. (eds) Neanderthals Revisited: New Approaches and Perspectives. Vertebrate Paleobiology and Paleoanthropology. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5121-0_12

Download citation