Quasioptical Terahertz Spectrometer Based on a Josephson Oscillator and a Cold Electron Nanobolometer

  • M. Tarasov
  • L. Kuzmin
  • E. Stepantsov
  • A. Kidiyarova-Shevchenko
Conference paper
Part of the NATO Science Series book series (NAII, volume 233)

Abstract

We have developed a low temperature transmission spectrometer operating in a wide range of frequencies from 100 GHz to 1.7 THz. The spectrometer has utilized the unique properties of high-Tc superconducting Josephson junctions and the wideband response of sensitive Cold-Electron Bolometers (CEB). The voltage response of the CEB integrated with log-periodic and double-dipole antennas, has been measured using an oscillator consisting of high-Tc Josephson junction integrated on a separate substrate with a log-periodic antenna. Superconducting Josephson junctions with high characteristic voltages (IcRn larger than 4 mV at 4.2 K) are fabricated by depositing YBa2Cu3O7-x on miscut sapphire bi-crystal substrates, where the tilting axis is along the grain boundary. The cold electron bolometer having a superconductor-insulator-normal metal-insulatorsuperconductor (SINIS) structure was 200 nm wide, 10 μm long, and terminating tunnel junctions were 200x300 nm2 area. The response of the bolometer with a double dipole antenna has resonance shape with maximum corresponding to the designed central frequency of 300 GHz. A voltage response of the bolometer up to 4·108 V/W corresponds to a noise equivalent power of the bolometer of 1.2·10-17 W/Hz1/2. Our measurements demonstrate that the Josephson junction is overheated by the transport current up to 3 K at 1 mV bias when it is placed on a millikelvin stage. A high-Tc Josephson junction operated at temperatures below 2 K has the advantage of a high IcRn product that enhances the oscillation frequency to above 2 THz.

Keywords

Microwave Sapphire Refrigeration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Richards PL (1994). J Appl Phys 76:1CrossRefADSMathSciNetGoogle Scholar
  2. 2.
    Kuzmin L (2004). Proc. 15th Int Symp on Space Terahertz Technology, Northampton, April 27–29Google Scholar
  3. 3.
    Irwin KD, Hilton GC, Wollman DA, Martinis J (1996). Appl Phys Lett 69:1945CrossRefADSGoogle Scholar
  4. 4.
    Peacock A, Verhoeve P, Rando N, et al (1997). J Appl Phys 81:7641CrossRefADSGoogle Scholar
  5. 5.
    Gershenson ME, Gong D, Sato T, Karasik BS, Sergeev AV (2001). Appl Phys Lett 79:2049CrossRefADSGoogle Scholar
  6. 6.
    Nahum M, Richards PL, Mears CA (1993). IEEE Trans Appl Supercond 3 :2124CrossRefADSGoogle Scholar
  7. 7.
    Chouvaev D, Kuzmin L (2001). Physica C 352 :128CrossRefADSGoogle Scholar
  8. 8.
    Kuzmin L (2000). Physica B 284–288 :2129CrossRefGoogle Scholar
  9. 9.
    Tarasov M, Fominsky M, Kalabukhov A, Kuzmin L (2002). JETP Lett 76 :507CrossRefADSGoogle Scholar
  10. 10.
    Kuzmin L, Devyatov I, Golubev D (1998). Proc. SPIE 3465:193CrossRefADSGoogle Scholar
  11. 11.
    Nahum M, Eiles TM, Martinis JM (1994) Appl Phys Lett 65 :3123CrossRefADSGoogle Scholar
  12. 12.
    Barends R, Gao JR, Klapwijk TM (2004) 6-th Eur. Workshop on Low Temp Electronics (WOLTE-6). 23–25 June, ESTEC, Noordwijk, The Netherlands, pp 25–31Google Scholar
  13. 13.
    Grossman E, McDonald D, Sauvageau J (1991). IEEE Trans Magn 27 :2677CrossRefADSGoogle Scholar
  14. 14.
    Sergeev AV, Mitin VV, Karasik BS (2002). Appl Phys Lett 80 :817CrossRefADSGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • M. Tarasov
    • 1
  • L. Kuzmin
    • 2
  • E. Stepantsov
    • 3
  • A. Kidiyarova-Shevchenko
    • 2
  1. 1.Institute of Radio Engineering and Electronics RASMoscowRussia
  2. 2.Chalmers University of TechnologyGöteborgSweden
  3. 3.Institute of Crystallography RASMoscowRussia

Personalised recommendations