• G.W. Scherer


Internal stresses arise during weathering of stone and masonry as a result of crystallization of salts and ice, swelling of clay inclusions, and thermal expansion, among other causes. In this paper, we review the origin of the stresses and examine the unresolved questions regarding several of these mechanisms.


Internal Stress Pore Wall Frost Damage Disjoin Pressure Crystallization Pressure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E.M. Winkler, Weathering of crystalline marble, pp. 717–721 in The engineering geology of ancient works, monuments and historical sites: preservation and protection, Editor: Marinos, Paul G.; Koukis, George C. (A.A. Balkema, Rotterdam, 1988)Google Scholar
  2. 2.
    E.M. Winkler, Stone in Architecture, 3rd. ed. (Springer, Berlin, 1997)Google Scholar
  3. 3.
    K. Lal Gauri and J.K. Bandyopadhyay, Carbonate Stone, Chemical behavior, durability and conservation (Wiley, New York, 1999)Google Scholar
  4. 4.
    S. Siegesmund, K. Ullemeyer, T. Weiss, and E.K. Tshegg, Physical weathering of marbles caused by anisotropic thermal expansion, Int. J. Earth Sci. 89, 170–182 (2000)CrossRefGoogle Scholar
  5. 5.
    G.G. Amoroso and V. Fassina, Stone Decay and Conservation (Elsevier, Amsterdam, 1983)Google Scholar
  6. 6.
    S. Chatterji, Aspects of the freezing process in a porous material-water system. Part 1. Freezing and the properties of water and ice, Cem. Concr. Res. 29, 627–630 (1999)CrossRefGoogle Scholar
  7. 7.
    T.C. Powers, The air requirement of frost-resistant concrete, Proc. Highway Res. Board, 29, 184–211 (1949)Google Scholar
  8. 8.
    D.H. Everett, The thermodynamics of frost damage to porous solids, Trans. Faraday Soc., 57, 1541–1551 (1961)CrossRefGoogle Scholar
  9. 9.
    G.W. Scherer, Crystallization in pores, Cement Concr. Res. 29 (8) 1347–1358 (1999); Reply to discussion of Crystallization in pores, G.W. Scherer, Cement and Concr. Res. 30 (4) 673–675 (2000)CrossRefGoogle Scholar
  10. 10.
    G.W. Scherer and J.J. Valenza II, Mechanisms of Frost Damage, in Materials Science of Concrete, Vol. VII, eds. J. Skalny and F. Young (American Ceramic Society, 2005) 209–246Google Scholar
  11. 11.
    S.Z. Lewin, The mechanism of masonry decay through crystallization, pp. 120–144 in Conservationof Historic Stone Buildings and Monuments (National Acad. Press, Washington, DC, 1982)Google Scholar
  12. 12.
    S. Taber, The growth of crystals under external pressure, Am. J. Sci. 41, 532–556 (1916)CrossRefGoogle Scholar
  13. 13.
    C.W. Correns, Growth and dissolution of crystals under linear pressure, Disc. Faraday Soc. 5, 267–271 (1949)CrossRefGoogle Scholar
  14. 14.
    J. Israelachvili, Intermolecular & Surface Forces, 2nd ed. (Academic, London, 1992)Google Scholar
  15. 15.
    P. Gallo, M.A. Ricci, and M. Rovere, Layer analysis of the structure of water confined in vycor glass, J. Chem. Phys. 116 (1) 342–346 (2002)CrossRefGoogle Scholar
  16. 16.
    P.K. Weyl, Pressure solution and the force of crystallization—A phenomenological theory, J. Geophys. Res. 64 (11) 2001–2025 (1959)Google Scholar
  17. 17.
    W.P. Halperin, S. Bhattacharija, and F. D’Orazio, Relaxation and dynamical properties of water in partially filled porous materials using NMR techniques, Magnetic Res. Imaging 9, 733–737 (1991)CrossRefGoogle Scholar
  18. 18.
    G.W. Scherer, Stress from crystallization of salt in pores, in Proc. 9th Int. Cong. Deterioration and Conservation of Stone, Vol. 1, ed. V. Fassina (Elsevier, Amsterdam, 2000) 187–194Google Scholar
  19. 19.
    G.W. Scherer, Stress from crystallization of salt, Cement Concr. Res. 34, 1613–1624 (2004)CrossRefGoogle Scholar
  20. 20.
    G.W. Scherer, Fundamentals of drying and shrinkage, in Science of Whitewares, eds. V.E. Henkes, G.Y. Onoda, and W.M. Carty (Am. Ceram. Soc., Westerville, OH, 1996) 199–211Google Scholar
  21. 21.
    J. Freundlich, Colloid & Capillary Chemistry (Methuen, London, 1926) 154–157Google Scholar
  22. 22.
    O. Coussy, Deformation and brittle fracture from drying-induced crystallization of salts, submitted to the Journal of the Mechanics and Physics of Solids Google Scholar
  23. 23.
    N.R. Buenfeld, M.T. Shurafa-Daoudi, and I.M. McLoughlin, Chloride transport due to wick action in concrete, Chloride Penetration into Concrete, ed. L.O. Nilsson and M.P. Olliver (RILEM, Paris, 1997) 315–324Google Scholar
  24. 24.
    G. Mayer and F.H. Wittmann, Ein Modell zur Beschreibung des Wasser—und Salztransports in Mauerwerk, Int. Zeitschrift für Bauinstandsetzen 2 (1) 67–82 (1996)Google Scholar
  25. 25.
    J.R. Dunn and P.P. Hudec, Water, clay, and rock soundness, Ohio J. Science 66 (2) 153–168 (1966)Google Scholar
  26. 26.
    C. Rodriguez-Navarro, E. Sebastian, E. Doehne, and W.S. Ginell, The role of sepiolite-palygorskite in the decay of ancient Egyptian limestone sculptures, Clays Clay Minerals 46 (4) 414–422 (1998)CrossRefGoogle Scholar
  27. 27.
    G.W. Scherer and I. Jimenez Gonzalez, Characterization of Swelling in Clay-Bearing Stone, in Stone decay and conservation, SP-390, ed. A.V. Turkington (Geological Soc. Am., 2005) 51–61Google Scholar
  28. 28.
    H. van Olphen, An Introduction to Clay Colloid Chemistry, 2d ed. (Wiley, NY, 1977)Google Scholar
  29. 29.
    G.W. Scherer, Relaxation in Glass and Composites (Wiley, New York, 1986; reprinted by Krieger, Malabar, FL, 1992)Google Scholar
  30. 30.
    J.W. Hutchinson, M.Y. He, A.G. Evans, The influence of imperfections on the nucleation and propagation of buckling driven delaminations, J. Mech. Physics Solids 48, 709–734 (2000)MATHCrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • G.W. Scherer
    • 1
  1. 1.Civil & Env. Eng./PRISMPrinceton UniversityNJUSA

Personalised recommendations