Skip to main content

Spectroscopic Measurements of Tropospheric Composition from Satellite Measurements in the Ultraviolet and Visible: Steps Toward Continuous Pollution Monitoring from Space

  • Conference paper
Remote Sensing of the Atmosphere for Environmental Security

Part of the book series: NATO Security through Science Series ((NASTC))

Abstract

This chapter reviews the current capabilities for ultraviolet and visible spectroscopic measurements of the Earth’s troposphere, and discusses what remains to be achieved in the short term to enable global, continuous measurements of atmospheric pollution from space to be undertaken. Challenges in instrumentation, spectroscopy, radiative transfer modeling, and retrievals are discussed. Current and planned satellite instruments with the capability to make tropospheric measurements in the ultraviolet and visible, with their measurement properties, spectral coverage, and target molecules, are presented. Measurement examples are taken from recent work done at the Harvard-Smithsonian Center for Astrophysics, together with our colleagues at a number of institutions. The examples include global tropospheric ozone (O3) measurements from the nadir geometry; global tropospheric nitrogen dioxide (NO2); bromine oxide (BrO) in the polar spring, and from salt lakes and volcanoes; global tropospheric formaldehyde (HCHO); and preliminary measurements of glyoxal (CHOCHO). Except for a few remaining developments, the field is shown to be sufficiently mature that global measurements of atmospheric pollution from space may be undertaken.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.P. Burrows and K.V. Chance, SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY, Proc. SPIE, Future European and Japanese Remote Sensing Sensors and Programs 1490, 146–154 (1991).

    CAS  Google Scholar 

  2. K.V. Chance, J.P. Burrows, and W. Schneider, Retrieval and molecule sensitivity studies for the Global Ozone Monitoring Experiment and the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY, Proc. SPIE Remote Sensing of Atmospheric Chemistry 1491, 151–165 (1991).

    CAS  Google Scholar 

  3. J. Fishman, A.E. Wozniak, and J.K. Creilson, Global distribution of tropospheric ozone from satellite measurements using the empirically corrected tropospheric ozone residual technique: Identification of the regional aspects of air pollution, Atmos. Chem. Phys. 3, 893–907, (2003).

    Article  CAS  Google Scholar 

  4. J. Fishman, J. K. Creilson, A. E. Wozniak, and P. J. Crutzen, Interannual variability of stratospheric and tropospheric ozone determined from satellite measurements, J. Geophys. Res. 110, D20306, doi:10.1029/2005JD005868 (2005).

    Article  CAS  Google Scholar 

  5. A.J. Krueger, S.J. Schaefer, N. Krotkov, G. Bluth, and S. Barker, Ultraviolet Remote Sensing of Volcanic Emissions, in: Remote Sensing of Active Volcanism, edited by P. Mouginis Mark, J.A. Crisp, and J. H. Fink, Geophysical Monograph 116, American Geophysical Union, Washington, DC (2000).

    Google Scholar 

  6. M. Eisinger and J.P. Burrows, Tropospheric sulfur dioxide observed by the ERS-2 GOME instrument, Geophys. Res. Lett. 25, 4177–4180 (1998).

    Article  CAS  Google Scholar 

  7. J. Joiner, and P.K. Bhartia, The determination of cloud pressures from rotational Raman scattering in SBUV measurements, J. Geophys. Res. 100, 23,019–23,026 (1995).

    Article  Google Scholar 

  8. http://www-iup.physik.uni-bremen.de/deu/; http://satellite.iup.uni-heidelberg.de/; http://www.ssd.rl.ac.uk/RSG/; http://www.aeronomie.be/; http://www.knmi.nl/omi/; http://neonet.knmi.nl/neoaf/; http://www.sron.nl/; http://hyperion.gsfc.nasa.gov/; http://www.jcet. umbc.edu/; http://www.caf.dlr.de/caf/institut/dfd/; http://www.esa.int/-esaEO/; http://www.space.gc.ca/asc/eng/satellites/

    Google Scholar 

  9. R.L. Kurucz, I. Furenlid, J. Brault, and L. Testerman, Solar Flux Atlas from 296 to 1300 nm, National Solar Observatory, Sunspot, New Mexico, 240 pp. (1984).

    Google Scholar 

  10. T.N. Woods, D.K. Prinz, G.J. Rottman, J. London, P.C. Crane, R.P. Cebula, E. Hilsenrath, G.E. Brueckner, M.D. Andrews, O.R. White, M.E. VanHoosier, L.E. Floyd, L.C. Herring, B.G. Knapp, C.K. Pankratz, and P.A. Reiser, Validation of the UARS solar ultraviolet irradiances: Comparison with the ATLAS 1 and 2 measurements, J. Geophys. Res. 101, 9541–9570 (1996).

    Article  Google Scholar 

  11. A. Berk, G.P. Anderson, L.S. Bernstein, P.K. Acharya, H. Dothe, M.W. Matthew, S.M. Adler-Golden, J.H. Chetwynd, Jr., S.C. Richtsmeier, B. Pukall, C.L. Allred, L.S. Jeong, and M.L. Hoke, MODTRAN4 radiative transfer modeling for atmospheric correction, Proc. SPIE, Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research III 3756, 348–353 (1999).

    Google Scholar 

  12. GOME Users Handbook Manual, ESA Special Publication SP-1182, ESTEC, Noordwijk, The Netherlands (1995).

    Google Scholar 

  13. S. Noël, J.P. Burrows, H. Bovensmann, J. Frerick, K.V. Chance, A.P.H. Goede, and C. Muller, Atmospheric trace gas sounding with SCIAMACHY, Adv. Space Res. 26, 1949–1954 (2000).

    Article  Google Scholar 

  14. K. Chance, Analysis of BrO measurements from the Global Ozone Monitoring Experiment, Geophys. Res. Lett. 25, 3335–3338 (1998).

    Article  CAS  Google Scholar 

  15. U. Platt, Differential Optical Absorption Spectroscopy (DOAS), in: Air Monitoring by Spectroscopic Techniques, edited by M.W. Sigrist, Chem. Anal. Ser. 127 (John Wiley, New York, 1994), pp. 27–84.

    Google Scholar 

  16. P.I. Palmer, D.J. Jacob, K. Chance, R.V. Martin, R.J.D. Spurr, T.P. Kurosu, I. Bey, R. Yantosca, A. Fiore, and Q. Li, Air mass factor formulation for spectroscopic measurements from satellites: Application to formaldehyde retrievals from the Global Ozone Monitoring Experiment, J. Geophys. Res. 106, 14,539–14,550 (2001).

    CAS  Google Scholar 

  17. R.V. Martin, K. Chance, D.J. Jacob, T.P. Kurosu, R.J.D. Spurr, E. Bucsela, J.F. Gleason, P.I. Palmer, I. Bey, A.M. Fiore, Q. Li, R.M. Yantosca, and R.B.A. Koelemeijer, An improved retrieval of tropospheric nitrogen dioxide from GOME, J. Geophys. Res. 107, 4437, doi:10.1029/2001JD0010127 (2002).

    Article  CAS  Google Scholar 

  18. R. Spurr, M. van Roozendael, J. Lambert, and C. Fayt, The GODFIT direct fitting algorithm: A new approach for total column retrieval, Proc. 2004 ENVISAT & ERS Symposium, ESA publication SP-572 (2004).

    Google Scholar 

  19. S.F. Singer and R.C. Wentworth, A method for the determination of the vertical ozone distribution from a satellite, J. Geophys. Res. 62, 299–308 (1957).

    CAS  Google Scholar 

  20. D.F. Heath, C.L. Mateer, and A.J. Krueger, The Nimbus-4 backscatter ultraviolet (BUV) atmospheric ozone experiment-two years’ operation, Pure Appl. Geophys. 106–108, 1238–1253 (1973).

    Article  Google Scholar 

  21. K.V. Chance, J.P. Burrows, D. Perner, and W. Schneider, Satellite measurements of atmospheric ozone profiles, including tropospheric ozone, from UV/visible measurements in the nadir geometry: A potential method to retrieve tropospheric ozone, J. Quant. Spectrosc. Radiat. Transfer 57, 467–476 (1997).

    Article  CAS  Google Scholar 

  22. C. Caspar and K. Chance, GOME wavelength calibration using solar and atmospheric spectra, Proc. Third ERS Symposium on Space at the Service of our Environment, edited by T.-D. Guyenne and D. Danesy, European Space Agency Special Publication SP-414 (1997).

    Google Scholar 

  23. J. Joiner, P.K. Bhartia, R.P. Cebula, E. Hilsenrath, R.D. McPeters, and H. Park, Rotational Raman scattering (Ring effect) in satellite backscatter ultraviolet measurements, Appl. Opt. 34, 4513–4525 (1995).

    Article  CAS  Google Scholar 

  24. K. Chance and R.J.D. Spurr, Ring effect studies: Rayleigh scattering, including molecular parameters for rotational Raman scattering, and the Fraunhofer spectrum, Appl. Opt. 36, 5224–5230 (1997).

    Article  CAS  Google Scholar 

  25. M. Vountas, V.V. Rozanov, and J.P. Burrows, Ring effect: Impact of rotational Raman scattering on radiative transfer in Earth’s Atmosphere, J. Quant. Spectrosc. Radiat. Transfer 60, 943–961 (1998).

    Article  CAS  Google Scholar 

  26. K. Chance, T.P. Kurosu, and C.E. Sioris, Undersampling correction for array detector-based satellite spectrometers, Appl. Opt. 44, 1296–1304 (2005).

    Article  Google Scholar 

  27. L.A. Hall, and G.P. Anderson, High-resolution solar spectrum between 200 and 3100 Å, J. Geophys. Res. 96, 12,927–12,931 (1991).

    Google Scholar 

  28. D.R. Bates, Rayleigh scattering by air, Planet. Space Sci. 32, 785–790 (1984).

    Article  Google Scholar 

  29. B.A. Bodhaine, N.B. Wood, E.G. Dutton, and J.R. Slusser, On Rayleigh optical depth calculations, J. Atmos. Ocean. Tech. 16, 1854–1861 (1999).

    Article  Google Scholar 

  30. J.F. Grainger and J. Ring, Anomalous Fraunhofer line profiles, Nature 193, 762 (1962).

    Article  Google Scholar 

  31. A.P. Vasilkov, J. Joiner, J. Gleason, and P.K. Bhartia, Ocean Raman scattering in satellite backscatter UV measurements, Geophys. Res. Lett. 29, 1837, doi:10.1029/2002GL014955 (2002).

    Article  Google Scholar 

  32. L.S. Rothman, D. Jacquemart, A. Barbe, D. Chris Benner, M. Birk, L.R. Brown, M.R. Carleer, C. Chackerian, Jr., K. Chance, L.H. Coudert, V. Dana, V.M. Devi, J.-M. Flaud, R.R. Gamache, A. Goldman, J.-M. Hartmann, K.W. Jucks, A.G. Maki, J.-Y. Mandin, S.T. Massie, J. Orphal, A. Perrin, C.P. Rinsland, M.A.H. Smith, J. Tennyson, R.N. Tolchenov, R.A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, The HITRAN 2004 molecular spectroscopic database, J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).

    Article  CAS  Google Scholar 

  33. J. Orphal and K. Chance, Ultraviolet and visible absorption cross sections for HITRAN, J. Quant. Spectrosc. Radiat. Transfer 82, 491–504 (2003).

    Article  CAS  Google Scholar 

  34. S. Goldman, Information Theory (Prentice-Hall, New York, 1953).

    Google Scholar 

  35. S. Slijkhuis, A. von Bargen, W. Thomas, and K. Chance, Calculation of undersampling correction spectra for DOAS spectral fitting, Proc. ESAMS’99-European Symposium on Atmospheric Measurements from Space, 563–569 (1999).

    Google Scholar 

  36. R.J.D. Spurr, T.P. Kurosu, and K. Chance, A linearized discrete ordinate radiative transfer model for atmospheric remote sensing retrieval, J. Quant. Spectrosc. Radiat. Transfer 68, 689–735 (2001).

    Article  CAS  Google Scholar 

  37. R.J.D. Spurr, LIDORT V2PLUS: A comprehensive radiative transfer package for UV/VIS/NIR nadir remote sensing; A general quasi analytic solution, Proc. SPIE, Remote Sensing of Clouds and the Atmosphere VIII 5235 (2003).

    Google Scholar 

  38. R.F. Van Oss and R.J.D. Spurr, Fast and accurate 4-stream linearized discrete ordinate radiative transfer models for ozone profile retrieval, J. Quant. Spectrosc. Radiat. Transfer 75, 177–220 (2002).

    Article  Google Scholar 

  39. V.V. Rozanov, D. Diebel, R.J.D. Spurr, and J.P. Burrows, GOMETRAN: A radiative transfer model for the satellite project GOME-the plane-parallel version, J. Geophys. Res. 102, 16,683–16,695 (1997).

    Article  CAS  Google Scholar 

  40. V.V. Rozanov, M. Buchwitz, K.-U. Eichmann, R. de Beek, and J.P. Burrows, SCIATRAN-a new radiative transfer model for geophysical applications in the 240–2400 nm spectral region: The pseudo-spherical version, Adv. Space Res. 29, 1831–1835 (2002).

    Article  CAS  Google Scholar 

  41. C.A. McLinden, J.C. McConnell, E. Griffioen, and C.T. McElroy, A vector radiative transfer model for the Odin/OSIRIS project, Can. J. Phys. 80, 375–393 (2002).

    Article  CAS  Google Scholar 

  42. J.F. De Haan, P.B. Bosma, and J.W. Hovenier, The adding method for multiple scattering calculations of polarized light, Astron. Astrophys. 183, 371–391 (1987).

    Google Scholar 

  43. P. Stammes, Spectral radiance modelling in the UV-visible range, in: IRS 2000: Current Problems in Atmospheric Radiation, edited by W.L. Smith and Y.M. Timofeyev (A. Deepak, Hampton, VA, 2001), pp. 385–388.

    Google Scholar 

  44. I. Bey, D.J. Jacob, R.M. Yantosca, J.A. Logan, B.D. Field, A.M. Fiore, Q. Li, H.Y. Liu, L.J. Mickley, and M.G. Schultz, Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation, J. Geophys. Res. 106, 23,073–23,096 (2001).

    CAS  Google Scholar 

  45. G.P. Brasseur, D.A. Hauglustaine, S. Walters, P.J. Rasch, J.-F. Muller, C. Granier, and X.X. Tie, MOZART: A global chemical transport model for ozone and related chemical tracers, Part 1. Model description, J. Geophys. Res. 103, 28,265–28,289 (1998).

    Article  CAS  Google Scholar 

  46. D.A. Hauglustaine, G.P. Brasseur, S. Walters, P.J. Rasch, J.-F. Muller, L.K. Emmons, and M.A. Carroll, MOZART: A global chemical transport model for ozone and related chemical tracers, Part 2. Model results and evaluation, J. Geophys. Res. 103, 28,291–28,335 (1998).

    Article  CAS  Google Scholar 

  47. A.J. Fleig, R.D. McPeters, P.K. Bhartia, B.M. Schlesinger, R.P. Cebula, K.F. Klenk, S.L. Taylor, and D.F. Heath, Nimbus-7 Solar Backscatter Ultraviolet (SBUV) Ozone Products User’s Guide, NASA Reference Publication, 1234, National Aeronautics and Space Administration, Washington, DC (1990).

    Google Scholar 

  48. R.D. McPeters, A.J. Krueger, P.K. Bhartia, and J.R. Herman, Earth Probe Total Ozone Mapping Spectrometer (TOMS) Data Products User’s Guide, NASA Reference Publication 1998-206895, National Aeronautics and Space Administration, Washington, DC (1998).

    Google Scholar 

  49. R. Munro, R. Siddans, W.J. Reburn, and B. Kerridge, Direct measurement of tropospheric ozone from space, Nature 392, 168–191 (1998).

    Article  CAS  Google Scholar 

  50. X. Liu, K. Chance, C.E. Sioris, R.J.D. Spurr, T.P. Kurosu, R.V. Martin, and M.J. Newchurch, Ozone profile and tropospheric ozone retrievals from Global Ozone Monitoring Experiment: Algorithm description and validation, J. Geophys. Res. 110, D20307, doi:10.1029/2005JD006240 (2005).

    Article  Google Scholar 

  51. X. Liu, K. Chance, C.E. Sioris, T.P. Kurosu, R.J.D. Spurr, R.V. Martin, M. Fu, J.A. Logan, D.J. Jacob, P.I. Palmer, M.J. Newchurch, I. Megretskaia, and R. Chatfield, First directly-retrieved global distribution of tropospheric column ozone from GOME: Comparison with the GEOS-CHEM model, J. Geophys. Res., in press (2006).

    Google Scholar 

  52. W. Thomas, E. Hegels, S. Slijkhuis, R. Spurr, and K. Chance, Detection of biomass burning combustion products in Southeast Asia from backscatter data taken by the GOME spectrometer, Geophys. Res. Lett. 25, 1317–1320 (1998).

    Article  CAS  Google Scholar 

  53. C.E. Sioris, T.P. Kurosu, R.V. Martin and K. Chance, Stratospheric and tropospheric NO2 observed by SCIAMACHY: First results, Adv. Space Res. Special issue: Trace Constituents in the Troposphere and Lower Stratosphere 34/4, 780–785 (2004).

    Google Scholar 

  54. R.V. Martin, D.J. Jacob, K. Chance, T.P. Kurosu, P.I. Palmer, and M.J. Evans, Global inventory of nitrogen oxide emissions constrained by space-based observations of NO2 columns, J. Geophys. Res. 108(D17), 4537, doi:10.1029/2003JD003453 (2003).

    Article  CAS  Google Scholar 

  55. R.V. Martin, D.D. Parrish, T.B. Ryerson, D.K. Nicks Jr., K. Chance, T.P. Kurosu, A. Fried, B.P. Wert, D.J. Jacob, and E.D. Sturges, Evaluation of GOME satellite measurements of tropospheric NO2 and HCHO using regional data from aircraft campaigns in the southeastern United States, J. Geophys. Res. 109, D24307, doi:10.1029/2004JD004869 (2004).

    Article  CAS  Google Scholar 

  56. L. Jaeglé, L. Steinberger, R.V. Martin, and K. Chance, Global partitioning of NOx sources using satellite observations: Relative roles of fossil fuel combustion, biomass burning and soil emissions, Faraday Discuss. 130, 407–423, doi:10.1039/b502128f (2005).

    Article  CAS  Google Scholar 

  57. L. Jaeglé, R.V. Martin, K. Chance, L. Steinberger, Kurosu, T.P., D.J. Jacob, A.I. Modi, V. Yoboué, L. Sigha-Nkamdjou, and C. Galy-Lacaux, Satellite mapping of rain-induced nitric oxide emissions from soils, J. Geophys. Res. 109, D21310, doi:10.1029/2004JD004787 (2004).

    Article  CAS  Google Scholar 

  58. Y. Choi, Y. Wang, T. Zeng, R.V. Martin, T.P. Kurosu, and K. Chance, Evidence of lightning NOx and convective transport of pollutants in satellite observations over North America, Geophys. Res. Lett. 32, L02805, doi:10.1029/2004GL021436 (2005).

    Article  CAS  Google Scholar 

  59. K. Kreher, P.V. Johnston, S.W. Wood, B. Nardi, and U. Platt, Ground-based measurements of tropospheric and stratospheric BrO at Arrival Heights, Antarctica, Geophys. Res. Lett. 24, 3021–3024, 1997.

    Article  CAS  Google Scholar 

  60. T. Zeng, Y. Wang, K. Chance, E.V. Browell, B.A. Ridley, and E.L. Atlas, Widespread persistent near-surface O3 depletion at northern high latitudes in spring, Geophys. Res. Lett. 30(24), 2298, doi:10.1029/2003GL018587 (2003).

    Article  CAS  Google Scholar 

  61. V. Matveev, M. Peleg, D. Rosen, D.S. Tov-Alper, K. Hebestreit, J. Stutz, U. Platt, D. Blake, and M. Luria, Bromine oxide-ozone interaction over the Dead Sea, J. Geophys. Res. 106, 10,375–10,387 (2001).

    Article  CAS  Google Scholar 

  62. J. Stutz, R. Ackermann, J.D. Fast, and L.A. Barrie, Atmospheric reactive chlorine and bromine at the Great Salt Lake, Utah, Geophys. Res. Lett. 29(10), doi:10.1029/2002GL014812 (2002).

    Google Scholar 

  63. N. Bobrowski, G. Hönninger, B. Galle, and U. Platt, Detection of bromine monoxide in a volcanic plume, Nature 423, 273–276 (2003).

    Article  CAS  Google Scholar 

  64. K. Chance, P. Palmer, R.J.D. Spurr, R.V. Martin, T. Kurosu, and D.J. Jacob. Satellite observations of formaldehyde over North America from GOME, Geophys. Res. Lett. 27, 3461–3464 (2000).

    Article  CAS  Google Scholar 

  65. P.I. Palmer, D.J. Jacob, A.M. Fiore, R.V. Martin, K. Chance, and T. Kurosu, Mapping isoprene emissions over North America using formaldehyde column observations from space, J. Geophys. Res. 108, 4180, doi:10.1029/2002JD002153 (2003).

    Article  CAS  Google Scholar 

  66. D.S. Abbot, P.I. Palmer, R.V. Martin, K.V. Chance, D.J. Jacob, and A. Guenther, Seasonal and interannual variability of isoprene emissions as determined by formaldehyde column measurements from space, Geophys. Res. Lett. 30, 1886, doi:10.1029/2003GL017336 (2003).

    Article  CAS  Google Scholar 

  67. C. Shim, Y. Wang, Y. Choi, P.I. Palmer, D.S. Abbot, and K. Chance, Constraining global isoprene emissions with GOME HCHO column measurements, J. Geophys. Res. 110, D24301, doi:10.1029/2004JD005629 (2005).

    Article  CAS  Google Scholar 

  68. R. Volkamer, L.T. Molina, M.J. Molina, T. Shirley, and W.H. Brune, DOAS measurement of glyoxal as an indicator for fast VOC chemistry in urban air, Geophys. Res. Lett. 32, L08806, doi:10.1029/2005GL022616 (2005).

    Article  CAS  Google Scholar 

  69. M.G. Dittman, E. Ramberg, M. Chrisp, J.V. Rodriguez, A.L. Sparks, N.H. Zaun, P. Hendershot, T. Dixon, R.H. Philbrick, and D. Wasinger, Nadir ultraviolet imaging spectrometer for the NPOESS Ozone Mapping and Profiler Suite (OMPS), Proc. SPIE Earth Observing Systems VII 4814, 111–119 (2002).

    Google Scholar 

  70. P.F. Levelt, G.H.J. van den Oord, M.R. Dobber, A. Malkki, H. Visser, J. de Vries, P. Stammes, J. Lundell, and H. Saari, The Ozone Monitoring Instrument, IEEE Transactions on Geoscience and Remote Sensing, in press (2006).

    Google Scholar 

  71. P. Magnan, Detection of visible photons in CCD and CMOS: A comparative view, Nucl. Instrum. Meth. Phys. Res. A 504, 199–212 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Chance, K. (2006). Spectroscopic Measurements of Tropospheric Composition from Satellite Measurements in the Ultraviolet and Visible: Steps Toward Continuous Pollution Monitoring from Space. In: Perrin, A., Ben Sari-Zizi, N., Demaison, J. (eds) Remote Sensing of the Atmosphere for Environmental Security. NATO Security through Science Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5090-9_1

Download citation

Publish with us

Policies and ethics