Recent Advances in the Delivery of Food-Derived Bioactives and Drugs Using Microemulsions

  • John Flanagan
  • Harjinder Singh


Sodium Dodecyl Sulphate Protein Drug Microemulsion System Microemulsion Formulation Sodium Dodecyl Sulphate Micelle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Flanagan, J. & Singh, H. (2006). Microemulsions: A potential delivery system for bioactives in food. Critical Reviews in Food Science and Nutrition, 46(3), 221-237.CrossRefPubMedGoogle Scholar
  2. 2.
    Gaonkar, A. G. & Bagwe, R. P. (2003). Microemulsions in Foods: Challenges and Applications. Surfactant Science Series, (109), 407-430.Google Scholar
  3. 3.
    Tenjarla, S. (1999). Microemulsions: An overview and pharmaceutical applications. Critical Reviews in Therapeutic Drug Carrier Systems, 16(5), 461-521.PubMedGoogle Scholar
  4. 4.
    Lawrence, M. J. & Rees, G. D. (2000). Microemulsion-based media as novel drug delivery systems. Advanced Drug Delivery Reviews, 45(1), 89-121.CrossRefPubMedGoogle Scholar
  5. 5.
    Bagwe, R. P., Kanicky, J. R., Palla, B. J., Patanjali, P. K., & Shah, D. O. (2001). Improved drug delivery using microemulsions: Rationale, recent progress and new horizons. Critical Reviews in Therapeutic Drug Carrier Systems, 18(1), 77-140.PubMedGoogle Scholar
  6. 6.
    D'Cruz, O. J. & Uckun, F. M. (2001). Gel-microemulsions as vaginal spermicides and intravaginal drug delivery vehicles. Contraception, 64(2), 113-123.CrossRefPubMedGoogle Scholar
  7. 7.
    Murdan, S., Gregoriadis, G., & Florence, A. T. (1999). Novel sorbitan monostearate organogels. Journal of Pharmaceutical Sciences, 88(6), 608-614.CrossRefPubMedGoogle Scholar
  8. 8.
    Murdan, S., Gregoriadis, G., & Florence, A. T. (1996). Non-ionic surfactant based organogels incorporating niosomes. Stp Pharma Sciences, 6(1), 44-48.Google Scholar
  9. 9.
    Murdan, S., Gregoriadis, G., & Florence, A. T. (1999). Inverse toroidal vesicles: precursors of tubules in sorbitan monostearate organogels. International Journal of Pharmaceutics, 183(1), 47-49.CrossRefPubMedGoogle Scholar
  10. 10.
    Murdan, S., Gregoriadis, G., & Florence, A. T. (1999). Sorbitan monostearate polysorbate 20 organogels containing niosomes: a delivery vehicle for antigens? European Journal of Pharmaceutical Sciences, 8(3), 177-185.CrossRefPubMedGoogle Scholar
  11. 11.
    Murdan, S., van den Bergh, B., Gregoriadis, G., & Florence, A. T. (1999). Water-in-sorbitan monostearate organogels (water-in-oil gels). Journal of Pharmaceutical Sciences, 88(6), 615-619.CrossRefPubMedGoogle Scholar
  12. 12.
    Shchipunov, Y. A. (2001). Lecithin organogel- A micellar system with unique properties. Colloids and Surfaces A Physicochemical and Engineering Aspects, 183, 541-554.CrossRefGoogle Scholar
  13. 13.
    Kantaria, S., Rees, G. D., & Lawrence, M. J. (1999). Gelatin-stabilised microemulsion-based organogels: rheology and application in iontophoretic transdermal drug delivery. Journal of Controlled Release, 60(2-3), 355-365.CrossRefPubMedGoogle Scholar
  14. 14.
    Angelico, R., Ceglie, A., Colafemmina, G., Lopez, F., Murgia, S., Olsson, U., & Palazzo, G. (2005). Biocompatible lecithin organogels: Structure and phase equilibria. Langmuir, 21(1), 140-148.CrossRefPubMedGoogle Scholar
  15. 15.
    Zhou, B., Miao, Q., Yang, L., & Liu, Z. L. (2005). Antioxidative effects of flavonols and their glycosides against the free-radical-induced peroxidation of linoleic acid in solution and in micelles. Chemistry-A European Journal, 11(2), 680-691.CrossRefGoogle Scholar
  16. 16.
    Zhou, B., Jia, Z. S., Chen, Z. H., Yang, L., Wu, L. M., & Liu, Z. L. (2000). Synergistic antioxidant effect of green tea polyphenols with alpha-tocopherol on free radical initiated peroxidation of linoleic acid in micelles. Journal of the Chemical Society-Perkin Transactions 2, 4, 785-791.CrossRefGoogle Scholar
  17. 17.
    Fang, J. G., Lu, M., Chen, Z. H., Zhu, H. H., Li, Y., Yang, L., Wu, L. M., & Liu, Z. L. (2002). Antioxidant effects of resveratrol and its analogues against the free-radical-induced peroxidation of linoleic acid in micelles. Chemistry-A European Journal, 8(18), 4191-4198.CrossRefGoogle Scholar
  18. 18.
    Zhou, B., Wu, L. M., Yang, L., & Liu, Z. L. (2005). Evidence for alpha-tocopherol regeneration reaction of green tea polyphenols in SDS micelles. Free Radical Biology and Medicine, 38(1), 78-84.CrossRefPubMedGoogle Scholar
  19. 19.
    Chiu, Y. C. & Yang, W. L. (1992). Preparation of vitamin E microemulsion possessing high resistance to oxidation. Colloids and Surfaces, 63, 311-322.CrossRefGoogle Scholar
  20. 20.
    Chmiel, O., Traitler, H., & Voepel, K. (1997). Food microemulsion formulations. US Patent No. 5,674,549.Google Scholar
  21. 21.
    Chung, S. L., Tan, C.-T., Tuhill, I. M., & Scharpf, L. G. (1994). Transparent oil-in-water microemulsion flavor or fragrance concentrate, process for preparing same, mouthwash or perfume composition containing said transparent microemulsion concentrate, and process for preparing same. US Patent No. 5,283,056.Google Scholar
  22. 22.
    Bauer, K., Neuber, C., Schmid, A., & Volker, K. M. (2002). Oil in water microemulsion. US Patent No. 6,426,078.Google Scholar
  23. 23.
    Szymula, M. (2004). Atmospheric oxidation of beta-carotene in aqueous, pentanol, SDS microemulsion systems in the presence and absence of vitamin C. Journal of Dispersion Science and Technology, 25(2), 129-137.CrossRefGoogle Scholar
  24. 24.
    Van den Braak, M., Szymula, M., & Ford, M. A. (2001). Stable, optically clear compositions. US Patent No. 6,251,441.Google Scholar
  25. 25.
    Spernath, A., Yaghmur, A., Aserin, A., Hoffman, R. E., & Garti, N. (2002). Food-grade microemulsions based on nonionic emulsifiers: Media to enhance lycopene solubilization. Journal of Agricultural and Food Chemistry, 50(23), 6917-6922.CrossRefPubMedGoogle Scholar
  26. 26.
    Garti, N., Yaghmur, A., Aserin, A., Spernath, A., Elfakess, R., & Ezrahi, S. (2004). Solubilization of active molecules in microemulsions for improved environmental protection. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 230 (1-3), 183-190.CrossRefGoogle Scholar
  27. 27.
    Amar, I., Aserin, A., & Garti, N. (2003). Solubilization patterns of lutein and lutein esters in food grade nonionic microemulsions. Journal of Agricultural and Food Chemistry, 51(16), 4775-4781.CrossRefPubMedGoogle Scholar
  28. 28.
    Spernath, A., Yaghmur, A., Aserin, A., Hoffman, R. E., & Garti, N. (2003). Self-diffusion nuclear magnetic resonance, microstructure transitions, and solubilization capacity of phytosterols and cholesterol in Winsor IV food-grade microemulsions. Journal of Agricultural and Food Chemistry, 51(8), 2359-2364.CrossRefPubMedGoogle Scholar
  29. 29.
    Gerhardt, N. I. & Dungan, S. R. (2002). Time-dependent solubilization of IgG in AOT-brine-isooctane microemulsions: Role of cluster formation. Biotechnology and Bioengineering, 78(1), 60-72.CrossRefPubMedGoogle Scholar
  30. 30.
    Rohloff, C. M., Shimek, J. W., & Dungan, S. R. (2003). Effect of added alpha-lactalbumin protein on the phase behavior of AOT-brine-isooctane systems. Journal of Colloid and Interface Science, 261(2), 514-523.CrossRefPubMedGoogle Scholar
  31. 31.
    Gerhardt, N. I. & Dungan, S. R. (2004). Changes in microemulsion and protein structure in IgG-AOT-brine isooctane systems. Journal of Physical Chemistry B, 108(28), 9801-9810.CrossRefGoogle Scholar
  32. 32.
    Sood, A. & Panchagnula, R. (2001). Peroral route: An opportunity for protein and peptide drug delivery. Chemical Reviews, 101(11), 3275-3303.CrossRefPubMedGoogle Scholar
  33. 33.
    Vandamme, T. F. (2002). Microemulsions as ocular drug delivery systems: recent developments and future challenges. Progress in Retinal and Eye Research, 21(1), 15-34.CrossRefPubMedGoogle Scholar
  34. 34.
    de Oliveira, A. G., Scarpa, M. V., Correa, M. A., Cera, L. F. R., & Formariz, T. P. (2004). Microemulsions: Structure and application as drug delivery systems. Quimica Nova, 27(1), 131-138.Google Scholar
  35. 35.
    Djordjevic, L., Primorac, M., Stupar, M., & Krajisnik, D. (2004). Characterization of caprylocaproyl macrogolglycerides based microemulsion drug delivery vehicles for an amphiphilic drug. International Journal of Pharmaceutics, 271(1-2), 11-19.CrossRefPubMedGoogle Scholar
  36. 36.
    Sari, P., Razzak, M., & Tucker, I. G. (2004). Isotropic systems of medium-chain mono-and diglycerides for solubilization of lipophilic and hydrophilic drugs. Pharmaceutical Development and Technology, 9(1), 97-106.CrossRefPubMedGoogle Scholar
  37. 37.
    Malcolmson, C., Satra, C., Kantaria, S., Sidhu, A., & Lawrence, M. J. (1998). Effect of oil on the level of solubilization of testosterone propionate into nonionic oil-in-water microemulsions. Journal of Pharmaceutical Sciences, 87(1), 109-116.CrossRefPubMedGoogle Scholar
  38. 38.
    Malcolmson, C., Barlow, D. J., & Lawrence, M. J. (2002). Light-scattering studies of testosterone enanthate containing soybean oil/C18:1E10/water oil-in-water micro-emulsions. Journal of Pharmaceutical Sciences, 91(11), 2317-2331.CrossRefPubMedGoogle Scholar
  39. 39.
    von Corswant, C. & Thoren, P. E. G. (1999). Solubilization of sparingly soluble active compounds in lecithin-based microemulsions: Influence on phase behavior and microstructure. Langmuir, 15(11), 3710-3717.CrossRefGoogle Scholar
  40. 40.
    von Corswant, C., Thoren, P., & Engstrom, S. (1998). Triglyceride-based microemulsion for intravenous administration of sparingly soluble substances. Journal of Pharmaceutical Sciences, 87(2), 200-208.CrossRefPubMedGoogle Scholar
  41. 41.
    Brime, B., Moreno, M. A., Frutos, G., Ballesteros, M. P., & Frutos, P. (2002). Amphotericin B in oil-water lecithin-based microemulsions: Formulation and toxicity evaluation. Journal of Pharmaceutical Sciences, 91(4), 1178-1185.CrossRefPubMedGoogle Scholar
  42. 42.
    Constantinides, P. P., Scalart, J. P., Lancaster, C., Marcello, J., Marks, G., Ellens, H., & Smith, P. L. (1994). Formulation and intestinal-absorption enhancement evaluation of water-in-oil microemulsions incorporating medium-chain glycerides. Pharmaceutical Research, 11(10), 1385-1390.CrossRefPubMedGoogle Scholar
  43. 43.
    Constantinides, P. P., Lancaster, C. M., Marcello, J., Chiossone, D. C., Orner, D., Hidalgo, I., Smith, P. L., Sarkahian, A. B., Yiv, S. H., & Owen, A. J. (1995). Enhanced intestinal-absorption of an RGD peptide from water-in-oil microemulsions of different composition and particle-size. Journal of Controlled Release, 34(2), 109-116.CrossRefGoogle Scholar
  44. 44.
    Constantinides, P. P. (1995). Lipid microemulsions for improving drug dissolution and oral absorption: Physical and biopharmaceutical aspects. Pharmaceutical Research, 12 (11), 1561-1572.CrossRefPubMedGoogle Scholar
  45. 45.
    Constantinides, P. P., Welzel, G., Ellens, H., Smith, P. L., Sturgis, S., Yiv, S. H., & Owen, A. B. (1996). Water-in-oil microemulsions containing medium-chain fatty acids salts: Formulation and intestinal absorption enhancement evaluation. Pharmaceutical Research, 13(2), 210-215.CrossRefPubMedGoogle Scholar
  46. 46.
    Lyons, K. C., Charman, W. N., Miller, R., & Porter, C. J. H. (2000). Factors limiting the oral bioavailability of N-acetylglucosaminyl-N-acetylmuramyl dipeptide (GMDP) and enhancement of absorption in rats by delivery in a water-in-oil microemulsion. International Journal of Pharmaceutics, 199(1), 17-28.CrossRefPubMedGoogle Scholar
  47. 47.
    Kreilgaard, M. (2002). Influence of microemulsions on cutaneous drug delivery. Advanced Drug Delivery Reviews, 54, S77-S98.CrossRefPubMedGoogle Scholar
  48. 48.
    Valenta, C. & Schultz, K. (2004). Influence of carrageenan on the rheology and skin permeation of microemulsion formulations. Journal of Controlled Release, 95(2), 257-265.CrossRefPubMedGoogle Scholar
  49. 49.
    Ilback, N. G., Nyblom, M., Carlfors, J., Fagerlund-Aspenstrom, B., Tavelin, S., & Glynn, A. W. (2004). Do surface-active lipids in food increase the intestinal permeability to toxic substances and allergenic agents? Medical Hypotheses, 63(4), 724-730.CrossRefPubMedGoogle Scholar
  50. 50.
    Chen, H. B., Chang, X. L., Weng, T., Zhao, X. Z., Gao, Z. H., Yang, Y. J., Xu, H. B., & Yang, X. L. (2004). A study of microemulsion systems for transdermal delivery of triptolide. Journal of Controlled Release, 98(3), 427-436.CrossRefPubMedGoogle Scholar
  51. 51.
    Sintov, A. C. & Shapiro, L. (2004). New microemulsion vehicle facilitates percutaneous penetration in vitro and cutaneous drug bioavailability in vivo. Journal of Controlled Release, 95(2), 173-183.CrossRefPubMedGoogle Scholar
  52. 52.
    Sintov, A. C., Krymberk, I., Gavrilov, V., & Gorodischer, R. (2003). Transdermal delivery of paracetamol for paediatric use: effects of vehicle formulations on the percutaneous penetration. Journal of Pharmacy and Pharmacology, 55(7), 911-919.CrossRefPubMedGoogle Scholar
  53. 53.
    Fialho, S. L. & Silva-Cunha, A. (2004). New vehicle based on a microemulsion for topical ocular administration of dexamethasone. Clinical and Experimental Ophthalmology, 32(6), 626-632.CrossRefPubMedGoogle Scholar
  54. 54.
    Rupenthal, I. D., Green, C. R., & Alany, R. G. (2005). Stability and ocular delivery of antisense oligonucleotides using water-in-oil microemulsions. Proceedings of Formulation and Delivery of Bioactives Conference, Dunedin. 18-19th February, 2005.Google Scholar
  55. 55.
    Park, K. M., Lee, M. K., Hwang, K. J., & Kim, C. K. (1999). Phospholipid-based microemulsions of flurbiprofen by the spontaneous emulsification process. International Journal of Pharmaceutics, 183(2), 145-154.CrossRefPubMedGoogle Scholar
  56. 56.
    Park, K. M. & Kim, C. K. (1999). Preparation and evaluation of flurbiprofen-loaded microemulsion for parenteral delivery. International Journal of Pharmaceutics, 181(2), 173-179.CrossRefPubMedGoogle Scholar
  57. 57.
    Hwang, S. R., Lim, S. J., Park, J. S., & Kim, C. K. (2004). Phospholipid-based microemulsion formulation of all-trans-retinoic acid for parenteral administration. International Journal of Pharmaceutics, 276(1-2), 175-183.CrossRefPubMedGoogle Scholar
  58. 58.
    Pitaksuteepong, T., Davies, N. M., Tucker, I. G., & Rades, T. (2002). Factors influencing the entrapment of hydrophilic compounds in nanocapsules prepared by interfacial polymerisation of water-in-oil microemulsions. European Journal of Pharmaceutics and Biopharmaceutics, 53(3), 335-342.CrossRefPubMedGoogle Scholar
  59. 59.
    Watnasirichaikul, S., Rades, T., Tucker, I. G., & Davies, N. M. (2002). Effects of formulation variables on characteristics of poly (ethylcyanoacrylate) nanocapsules prepared from w/o microemulsions. International Journal of Pharmaceutics, 235(1-2), 237-246.CrossRefPubMedGoogle Scholar
  60. 60.
    Watnasirichaikul, S., Rades, T., Tucker, I. G., & Davies, N. M. (2002). In-vitro release and oral bioactivity of insulin in diabetic rats using nanocapsules dispersed in biocompatible microemulsion. Journal of Pharmacy and Pharmacology, 54(4), 473-480.CrossRefPubMedGoogle Scholar
  61. 61.
    Agatonovic-Kustrin, S., Glass, B. D., Wisch, M. H., & Alany, R. G. (2003). Prediction of a stable microemulsion formulation for the oral delivery of a combination of antitubercular drugs using ANN methodology. Pharmaceutical Research, 20(11), 1760-1765.CrossRefPubMedGoogle Scholar
  62. 62.
    Ke, W. T., Lin, S. Y., Ho, H. O., & Sheu, M. T. (2005). Physical characterizations of microemulsion systems using tocopheryl polyethylene glycol 1000 succinate (TPGS) as a surfactant for the oral delivery of protein drugs. Journal of Controlled Release, 102(2), 489-507.CrossRefPubMedGoogle Scholar
  63. 63.
    Shevachman, M., Shani, A., & Garti, N. (2004). Formation and investigation of microemulsions based on Jojoba oil and nonionic surfactants. Journal of the American Oil Chemists Society, 81(12), 1143-1152.CrossRefGoogle Scholar
  64. 64.
    Ma, Z. & Brucks, R. M. (2004). Antiperspirant compositions comprising micro- emulsions., US Patent No. 6,790,435.Google Scholar
  65. 65.
    Kawakami, K., Yoshikawa, T., Moroto, Y., Kanaoka, E., Takahashi, K., Nishihara, Y., & Masuda, K. (2002). Microemulsion formulation for enhanced absorption of poorly soluble drugs - I. Prescription design. Journal of Controlled Release, 81(1-2), 65-74.CrossRefPubMedGoogle Scholar
  66. 66.
    Bagwe, R. P. & Shah, D. O. (2002). Effect of various additives on solubilization, droplet size and viscosity of canola oil in oil-in-water food grade microemulsions. Abstracts of Papers, 223rd ACS National Meeting, April 7-11, Orlando, Florida.Google Scholar
  67. 67.
    Glatter, O., Orthaber, D., Stradner, A., Scherf, G., Fanun, M., Garti, N., Clement, V., & Leser, M. E. (2001). Sugar-ester nonionic microemulsion: Structural characterization. Journal of Colloid and Interface Science, 241(1), 215-225.CrossRefPubMedGoogle Scholar
  68. 68.
    Yaghmur, A., Aserin, A., Antalek, B., & Garti, N. (2003). Microstructure considerations of new five-component Winsor IV food-grade microemulsions studied by pulsed gradient spin-echo NMR, conductivity, and viscosity. Langmuir, 19(4), 1063-1068.CrossRefGoogle Scholar
  69. 69.
    Ghoulam, M. B., Moatadid, N., Graciaa, A., & Lachaise, J. (2004). Quantitative effect of nonionic surfactant partitioning on the hydrophile-lipophile balance temperature. Langmuir, 20, 2584-2589.CrossRefPubMedGoogle Scholar
  70. 70.
    Flanagan, J., Kortegaard, K., Pinder, D. N., Rades, T., & Singh, H. (2006). Solubilisation of soybean oil in microemulsions using various surfactants. Food Hydrocolloids, 20 (2-3), 253-260.CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • John Flanagan
    • 1
  • Harjinder Singh
    • 2
  1. 1.Riddet CentreMassey UniversityNew Zealand
  2. 2.Riddet CentreMassey UniversityNew Zealand

Personalised recommendations