Skip to main content

Hydrotropic Nanocarriers for Poorly Soluble Drugs

  • Chapter

Keywords

  • Critical Micelle Concentration
  • Atom Transfer Radical Polymerization
  • Polymer Backbone
  • Polymer Micelle
  • Soluble Drug

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4020-5041-1_4
  • Chapter length: 23 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-1-4020-5041-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   249.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Taton, T.A. Bio-nanotechnology: Two-way traffic, Nature Materials 2003, 2, 73-44.

    CAS  Google Scholar 

  2. Baldwin, B.L. Making a network of hydrophobic clusters, Science 2002, 295, 1657-1658.

    CrossRef  CAS  PubMed  Google Scholar 

  3. Scatena, L.F., Brown, M.G., Richmond, G.L. Water at hydrophobic surfaces: weak hydrogen bonding and strong orientation effects, Science 2001, 292, 908-912.

    CrossRef  CAS  PubMed  Google Scholar 

  4. Jain, T.K., Morales, M.A., Sahoo, S.K., Lesile-Pelecky, D.L., Labhasetwar, V. Iron oxide nanoparticle for sustained delivery of anticancer drugs, Mol. Pharm. 2005, 2, 185-193.

    CrossRef  Google Scholar 

  5. Gao, Z., Lukyanov, A.N., Singhal, A., Torchilin, V.P. Diacyllipid-polymer micelles as nanocarriers for poorly soluble anticancer drugs, Nano Lett. 2004, 4, 1915-1918.

    CrossRef  Google Scholar 

  6. Srinivas, G., Discher, D.E., Klein, M.L. Self-assembly and properties of diblock copolymers by coarse-grain molecular dynamics, Nature Materials, 2004, 3, 638-644.

    CrossRef  CAS  PubMed  Google Scholar 

  7. Coffman, R.E., Kildsig, D.O. Hydrotropic solubilization-mechanistic studies, Pharm. Res. 1996, 13, 1460-1463.

    CrossRef  CAS  PubMed  Google Scholar 

  8. Kildsig, D.O., Suzuki, H., Sunada, H. Mechanistic studies on hydrotropic solubilization of nifedipine in nicotinamide solution. Chem. Pharm. Bull 1998, 46, 125-130.

    Google Scholar 

  9. Silva, R.C.D., Spitzer, M., Silva, L.H.M.D., Loh, W. Investigations on the mechanism of aqueous solubility increase caused by some hydrotropes. Thermochimica Acta 1999, 328, 161-167.

    CrossRef  Google Scholar 

  10. Balasubramanian, D., Srinivas, V., Gaikar, V.G., Sharma, M.M. Aggregation behavior of hydrotropic compounds in aqueous solution. J. Phys. Chem. 1989, 93, 3865-3870.

    CrossRef  CAS  Google Scholar 

  11. Hussain, M.A., Diluccio, R.C., Maurin, M.B. Complexation of moricizine with nicotinamide and evaluation of the complexation constants by various methods. J. Pharm. Sci. 1993, 82, 77-79.

    CrossRef  CAS  PubMed  Google Scholar 

  12. Rasool, A.A., Hussain, A.A., Dittert, L.W. Solubility enhancement of some water-insoluble drugs in the presence of nicotinamide and related compounds. J. Pharm. Sci. 1991,80, 387-393.

    CrossRef  CAS  PubMed  Google Scholar 

  13. Fawzi, M.B., Davision, E., Tute, M.S. Rationalization of drug complexation in aqueous solution by use of huckel frontier molecular orbitals. J. Pharm. Sci. 1980, 69, 104-106.

    CrossRef  CAS  PubMed  Google Scholar 

  14. Lee, J., Lee, S.C., Acharya, G., Chang, C.J., Park, K. Hydrotropic solubilization of paclitaxel: Analysis of chemical structures for hydrotropic property. Pharm. Res. 2003, 20, 1022-1030.

    CrossRef  CAS  PubMed  Google Scholar 

  15. Login, R.B., Merianos, J.J., Dandreaux, G., and Shih, J.S. Polymerizable derivatives of 5-oxo-pyrrolidinecarboxylic acid, U.S. Patent, U.S.A., 4,946,967, 1990.

    Google Scholar 

  16. Dandreaux, G., Login, R.B., Merianos, J.J., Garelick, P., Plochocka, K., Negrin, M. and Shih, J.S. Poly(pyrrolidonyl oxazoline), U.S. Patent, U.S.A., 5,008,367, 1991.

    Google Scholar 

  17. Lee, S.C, Lee, J., and Park, K. Unpublished results.

    Google Scholar 

  18. Lee, S.C., Acharya, G., Lee, J. and Park, K. Hydrotropic polymers: Synthesis and characterization of polymers containing picolylnicotinamide moieties, Macromolecules 2003,36, 2248-2255.

    CrossRef  CAS  Google Scholar 

  19. Frechet, J.M.J., Tomalia, D.A. Dendrimers and Other Dendritic Polymers, John Wiley and Sons, NY, 2001.

    CrossRef  Google Scholar 

  20. Kojima, C., Kono, K., Maruyama, K., Takagishi, T. Synthesis of polyamidoamine dendrimers having poly(ethylene glycol) grafts and their ability to encapsulate anticancer drugs, Bioconjugate Chem. 2000, 11, 910-917.

    CrossRef  CAS  Google Scholar 

  21. Morgan, M.T., Carnahan, M.A., Immoos, C.E., Ribeiro, A.A., Finkelstrin, S., Lee, S.J., Grinstaff, M.W. Dendritic molecular capsules for hydrophobic compounds, J. Am. Chem. Soc. 2003, 125, 15485-15489.

    CrossRef  CAS  PubMed  Google Scholar 

  22. Ihre, H.R., Padilla De Jesus, O.L., Szoka, F.C. Jr., Frechet, J.M.J. Polyester dendritic systems for drug delivery applications: Design, synthesis, and characterization. Bioconjugate Chem. 2002, 13, 443-452.

    CrossRef  CAS  Google Scholar 

  23. Padilla De Jesus, O.L., Ihre, H.R., Gagne, L., Frechet, J.M.J., Szoka, F.C., Jr. Bioconjugate Chem. 2002, 13, 453-461.

    CrossRef  CAS  Google Scholar 

  24. Haag, R., Sunder, A., Stumbe, J.F. An approach to glycerol dendrimers and pseudo- dendritic polyglycerols. J. Am. Chem. Soc. 2000, 122, 2954-2955.

    CrossRef  CAS  Google Scholar 

  25. Frey, H., Haag, R. Dendritic polyglycerol: a new versatile biocompatible material. Rev. Mol. Biotech. 2002, 90, 257-267.

    CrossRef  CAS  Google Scholar 

  26. Leuner, C., Dressman, J. Improving drug solubility for oral delivery using solid dispersions, European J. Pharm. Biopharm. 2000, 50, 47-60.

    CrossRef  CAS  Google Scholar 

  27. Sugimoto, M., Okagaki, T., Narisawa, S., Koida, Y., Nakajima, K. Improvement of dissolution characteristics and bioavailability of poorly water-soluble drugs by novel cogrinding method using water-soluble polymer. Int. J. Pharm. 1998, 160, 11-19.

    CrossRef  CAS  Google Scholar 

  28. Basit, A.W., Newton, J.M., Short, M.D., Waddington, W.A., Ell, P.J., Lacey, L.F. The effects of polyethylene glycol 400 on gastrointestinal transit: Implications for the formulation of poorly-water soluble drugs, Pharm. Res., 2001, 18, 1146-1150.

    CrossRef  CAS  PubMed  Google Scholar 

  29. Groves, M.J., Bassett, B., Sheth, V. The solubility of 17 β-oestradiol in aqueous polyethylene glycol 400, J. Pharm. Pharmacol., 1984, 36, 799-802.

    CAS  PubMed  Google Scholar 

  30. Sato, T., Niwa, H., Chiba, A. Dynamical structure of oligo(ethylene glycol)s-water solutions studied by time domain reflectometry, J. Chem. Phys., 1998, 108, 4138-4147.

    CrossRef  CAS  Google Scholar 

  31. Ooya, T., Lee, J., Park, K. Hydrotropic dendrimers of generations 4 and 5: Synthesis, characterization, and hydrotropic solubilization of paclitaxel, Bioconjugate Chem., 2004, 15, 1221-1229.

    CrossRef  CAS  Google Scholar 

  32. Ooya, T., Lee, J., Park, K. Effects of ethylene glycol-based graft, star-shaped, and dendritic polymers on solubilization and controlled release of paclitaxel. J. Controlled Release, 2003, 93, 121-127.

    CrossRef  CAS  Google Scholar 

  33. Mall, S., Buckton, G., Rawlins, D.A. Dissolution behaviour of sulphonamides into sodium dodecyl sulfate micelles: A thermodynamic approach. J. Pharm. Sci., 1996. 85, 75-78.

    CrossRef  CAS  PubMed  Google Scholar 

  34. Myrdal, P.B., Yalkowsky, S.H. Solubilization of drugs in aqueous media, in Encyclopedia of Pharmaceutical Technology. 2002, Marcel Dekker, Inc. pp. 2458-2480.

    Google Scholar 

  35. Bader, H., Ringsdorf, H., Schmidt, B., Watersoluble Polymers in Medicine. Angew. Makromol. Chem., 1984. 123, 457-485.

    CrossRef  Google Scholar 

  36. Allen, C., Maysinger, D., Eisenberg, A. Nano-engineering block copolymer aggregates for drug delivery. Colloids and Surfaces B: Biointerfaces, 1999. 16, 3-27.

    CrossRef  CAS  Google Scholar 

  37. Jones, M.C., Leroux, J.C. Polymeric micelles - a new generation of colloidal drug carriers. Euro. J. Pharm. Biopharm., 1999. 48, 101-111.

    CrossRef  CAS  Google Scholar 

  38. Lavasanifar, A., Samuel, J., Kwon, G.S. Poly(ethylene oxide)-block-poly(L-amino acid) micelles for drug delivery. Adv. Drug. Del. Rev., 2002. 54, 169-190.

    CrossRef  CAS  Google Scholar 

  39. Kwon, G.S. Polymeric micelles for delivery of poorly water-soluble compounds. Crit. Rev. Ther. Drug Carr. Syst., 2003. 20, 357-404.

    CrossRef  CAS  Google Scholar 

  40. Kwon, G.S., Okano, T. Polymeric micelles as new drug carriers. Adv. Drug. Del. Rev., 1996.21, 107-116.

    CrossRef  CAS  Google Scholar 

  41. Soga, O., Van Nostrum, C.F., Fens, M., Rijcken, C.J.F., Schiffelers, R.M., Storm, G. and Hennink, W.E. Thermosensitive and biodegradable polymeric micelles for paclitaxel delivery. J. Control. Rel., 2005. 103, 341-353.

    CrossRef  CAS  Google Scholar 

  42. Ooya, T., Lee, J., Park, K., Solubility enhancement of paclitaxel by PEGylated polyglycerol dendrimers. Controlled Release Society 31st Annual Meeting transactions, 2004, #684.

    Google Scholar 

  43. Nakanishi, T., Fukushima, S., Okamoto, K., Suzuki, M., Matsumura, Y., Yokoyama, M., Okano, T., Sakurai, Y. and Kataoka, K. Development of the polymer micelle carrier system for doxorubicin. J. Control. Rel., 2001, 74(1-3), 295-302.

    CrossRef  CAS  Google Scholar 

  44. Yokoyama, M., Okano, T., Sakurai, Y., Suwa, S. and Kataoka, K. Introduction of cisplatin into polymeric micelle. J. Control. Rel., 1996. 39, 351-356.

    CrossRef  CAS  Google Scholar 

  45. Lavasanifar, A., Samuel, J., Kwon, G.S. Micelles self-assembled from poly(ethylene oxide)-block-poly(N-hexyl stearate L-aspartamide) by a solvent evaporation method: effect on the solubilization and haemolytic activity of amphotericin B. J. Control. Rel., 2001,77, 155-160.

    CrossRef  CAS  Google Scholar 

  46. Ould-Ouali, L., Noppe, M., Langlois, X., Willems, B., Te Riele, P., Timmerman, P., Brewster, M.E., Arien, A., Preat, V. Self-assembling PEG-p(CL-co-TMC) copolymers for oral delivery of poorly water-soluble drugs: a case study with risperidone. J. Control. Rel., 2005. 102, 657-668.

    CrossRef  CAS  Google Scholar 

  47. Aliabadi, H.M., Mahmud, A., Sharifabadi, A.D., Lavasanifar, A. Micelles of methoxy poly(ethylene oxide)-b-poly(epsilon-caprolactone) as vehicles for the solubilization and controlled delivery of cyclosprine A. J. Control. Rel., 2005. 104, 301-311.

    CAS  Google Scholar 

  48. Huh, K.M., Lee, S.C., Cho, Y.W., Lee, J., Jeong, J.H., Park, K. Hydrotropic polymer micelle system for delivery of paclitaxel. J. Control. Rel., 2005. 101, 59-68.

    CrossRef  CAS  Google Scholar 

  49. Ooya, T., Huh, K.M., Saitoh, M., Tamiya, E., Park, K. Self-assembly of cholesterol-hydrotropic dendrimer conjugates into micelle-like structure: Preparation and hydrotropic solubilization of paclitaxel. Sci. Tech. Adv. Mater., 2005, 6 (5): 452-456.

    CrossRef  CAS  Google Scholar 

  50. Akiyoshi, K., Deguchi, S., Tajima, H., Nishikawa, T., Sunamoto, J. Microscopic structure and thermoresponsiveness of a hydrogel nanoparticle by self-assembly of a hydrophobized polysaccharide. Macromolecules 1997, 30, 857-861.

    CrossRef  CAS  Google Scholar 

  51. Yusa, S., Kamachi, M., Morishima, Y. Self-association of cholesterol-end-capped poly(sodium 2-(acrylamido)-2-methylpropanesulfonate) in aqueous solution. Macro-molecules 2000, 33, 1224-1231.

    CAS  Google Scholar 

  52. Liggins, R.T., Burt, H.M. Polyether-polyester diblock copolymers for the preparation of paclitaxel loaded polymeric micelle formulations. Adv. Drug Delivery Review 2002, 54, 191-202.

    CrossRef  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Ooya, T., Lee, S.C., Huh, K.M., Park, K. (2006). Hydrotropic Nanocarriers for Poorly Soluble Drugs. In: Mozafari, M.R. (eds) Nanocarrier Technologies. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5041-1_4

Download citation