Plant Growth Regulators I: Introduction; Auxins, their Analogues and Inhibitors

  • Edwin F. George
  • Michael A. Hall
  • Geert-Jan De Klerk


Somatic Embryo Somatic Embryogenesis Plant Growth Regulator Embryogenic Callus Auxin Transport 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aloni R. 2004 The Induction Of Vascular Tissues By Auxin. pp. 471-492 In Davies P.J. (Ed.) Plant Hormones, Kluwer Academic Publishers, Dordrecht.Google Scholar
  2. Asano Y., Katsumoto H., Inokuma C., Kaneko S., Ito Y. & Fujiie A. 1996 Cytokinin And Thiamine Requirements And Stimulative Effects Of Riboflavin And Alpha-Ketoglutaric Acid On Embryogenic Callus Induction From The Seeds Of Zoysia Japonica Steud. J. Plant Physiol. 149, 413–417.Google Scholar
  3. Baker D.A. 2000 Vascular transport of auxins and cytokinins in Ricinus. Plant Growth Regul. 32, 157–160.Google Scholar
  4. Bandurski, R.S., Cohen, J.D., Slovin, J.P., Reinecke, D.M. 1995 Auxin biosynthesis and metabolism. pp. 39-65 in Davies P.J. (ed.) Plant Hormones. Kluwer Academic Publishers, Dordrecht.Google Scholar
  5. Barendse G.W.M., Croes A.F., Bosveld M., Van Der Krieken W.M.& Wullems, G.J. 1987 Uptake and metab-olism of NAA and BAP in explants of tobacco in relation to in vitro flower bud formation. J. Plant Growth Regul. 6, 193–200.Google Scholar
  6. Barnes L.R. 1979 In vitro propagation of water melon. Scientia Hort. 11, 223–227.Google Scholar
  7. Barz W. 1977 Catabolism of endogenous and exogenous compounds by plant cell cultures. pp. 153-171 in Barz et al. (eds.) 1977 (q.v.).Google Scholar
  8. Barz W., Reinhard E. & Zenk M.H. (eds.) 1977 Plant Tissue Culture and its Biotechnological Application. Springer-Verlag, Berlin, Heidelberg, New York.Google Scholar
  9. Basu R.N., Bose T.K., Roy B.N. & Mukhopadhyay A. 1969 Auxin synergists in rooting of cuttings. Physiol. Plant. 22, 649–652.Google Scholar
  10. Baulcombe D.C. & Key J.L. 1980 Polyadenylated RNA sequences which are reduced in concentration following auxin treatment of soybean hypocotyls. J. Biol. Chem. 255, 8907–8913.Google Scholar
  11. Bennet-Clark T.A. & Kefford N.P. 1953 Chromato-graphy of the growth substances in plant extracts. Nature 171, 645–647.PubMedGoogle Scholar
  12. Bennett M.J., Marchant A., May S.T. & Swarup R. 1998 Going the distance with auxin: unravelling the molecular basis of auxin transport. Phil. Trans. Roy. Soc. Lond. B, 353, 1511–1515.Google Scholar
  13. Berthon J.Y., Boyer N. & Gaspar T. 1991 Uptake, distribution and metabolism of 2,4-dichlorophenoxyacetic acid in shoots of juvenile and mature clones of Sequoiadendron giganteum in relation to rooting in vitro. Plant Physiol. Biochem. 29, 355–362.Google Scholar
  14. Beyl C.A. & Sharma G.C. 1983 Picloram induced somatic embryogenesis in Gasteria and Haworthia. Plant Cell Tiss. Organ Cult. 2, 123–132.Google Scholar
  15. Bhatla S.C., Kapoor S. & Khurana J.P. 1996 Involvement of calcium in auxin-induced cell differentiation in the protonema of the wild strain and auxin mutants of the moss Funaria hygrometrica. J. Plant Physiol. 147, 547–552.Google Scholar
  16. Blackmon W.J., Reynolds B.D. & Postek C.E. 1981 Production of somatic embryos from callused cantaloupe hypo-cotyl explants. HortScience 16, 451 (Abst. 381).Google Scholar
  17. Bonga J.M. & Durzan D.J (eds.) 1982 Tissue Culture in Forestry. Martinus Nijhoff/Dr. W. Junk Publishers, Dordrecht, Boston, Lancaster. ISBN 90-247-2660-3.Google Scholar
  18. Bouillenne C. & Gaspar T. 1970 Auxin catabolism and inihibitors in normal and crown gall tissues of Impatiens balsamina. Can. J. Bot. 48, 1159–1163.Google Scholar
  19. Bozhkov P.V., Filonova L.H.& Von Arnold, S. 2002 A key developmental switch during Norway spruce somatic embryogenesis is induced by withdrawal of growth regulators and is associated with cell death and extracellular acidification. Biotechnol. Bioeng. 77, 658–667.PubMedGoogle Scholar
  20. Brennan T.M. 1996 Decarboxylation of indole-3-acetic acid and inhibition of growth in Avena sativa seedlings by plant-derived photosensitizers. Photochem. Photobiol. 64, 1001–1006.Google Scholar
  21. Bronsema F.B.F., Redig P., Vanoostveen W.J.F., Vanonckelen H.A. & Van Lammeren A.A.M. 1996 Uptake and biochemical analysis of 2,4-D in cultured zygotic embryos of Zea mays L. J. Plant Physiol. 149, 363–371.Google Scholar
  22. Brown S.A. 1981 Coumarins. pp. 269-300 in Conn E.E. (ed.) 1981 (q.v.).Google Scholar
  23. Buchanan B.B., Gruissen W., Jones R.L. 2000. Biochemistry and Molecular Biology of Plants. American Society of Plant Physiologists, Rockville, Maryland.Google Scholar
  24. Campbell A.D. & Sutter E.G. 1986 Changes in IAA concentration in agar during tobacco callus culture. p. 297 in Somers et al. (eds.) 1986 (q.v.).Google Scholar
  25. Carman J.G., Jefferson N.E. & Campbell W.F. 1988 Induction of embryogenic Triticum aestivum L. calli. II. Quantification of organic addenda and other culture variable effects. Plant Cell Organ Tiss. Cult. 12, 97–110.Google Scholar
  26. Cassells A.C. 1979 The effect of 2,3,5-tri-iodobenzoic acid on caulogenesis in callus cultures of tomato and Pelargonium. Physiol. Plant. 46, 159–164.Google Scholar
  27. Cassells A.C., Long R.D. & Mousdale D.M.A. 1982 Endogenous IAA and morphogenesis in tobacco petiole cultures. Physiol. Plant. 56, 507–512.Google Scholar
  28. Centeno M.L., Rodriguez A., Feito I. & Fernandez B. 1996 Relationship between endogenous auxin and cytokinin levels and morphogenic responses in Actinidia deliciosa tissue cultures. Plant Cell Rep. 16, 58–62.Google Scholar
  29. Chancel L.M., Machiex J. & Jonard R. 1980 Les conditions du microbouturage in vitro du pecher (Prunus persica Bathsch.): influences combine des substances De croissance et De divers composs phenoliques. Physiol. Veg. 18, 597–608.Google Scholar
  30. Chang F.Y. & Vanden Born W.H. 1971 Dicamba uptake, translocation, metabolism and selectivity. Weed Sci. 19, 113–117.Google Scholar
  31. Chaturvedi H.C., Sharma A.K. & Prasad R.N. 1978 Shoot apex culture of Bougainvillea glabra ‘Magnifica’. HortScience 13, 36.Google Scholar
  32. Cheng T.-Y. 1972 Induction of IAA synthesis in tobacco pith explants. Plant Physiol. 50, 723–727.PubMedGoogle Scholar
  33. Chevre A.-M. & Salesses G. 1987 Choice of explants for chestnut micropropagation. Acta Hort. 212, 517–523.Google Scholar
  34. Choi Y.E., Katsumi M.& Sano, H. 2001 Triiodobenzoic acid, an auxin polar transport inhibitor, suppresses somatic embryo formation and postembryonic shooot/root development in Elutherococcus senticosus. Plant Sci. 160, 1183–1190.PubMedGoogle Scholar
  35. Clapham D. 1973 Haploid Hordeum plants from anthers in vitro. Z. Pflanzenzucht. 69, 142–155.Google Scholar
  36. Clare M.V. & Collin H.A. 1974 The production of plantlets from tissue cultures of Brussels sprout (Brassica oleracea L. var. gemmifera D.C.). Ann. Bot. 38, 1067–1076.Google Scholar
  37. Cleland R.E. 2004 Auxin and cell elongation. pp. 204-220 in Davies P.J. (ed.) Plant Hormones, Kluwer Academic Publishers, Dordrecht.Google Scholar
  38. Cline M.G. 1994 The role of hormones in apical dominance - new approaches to an old problem in plant development. Physiol. Plant.90, 230–237.Google Scholar
  39. Cohen J.D. & Bandurski R.S. 1982 Chemistry and phy-siology of the bound auxins. Ann. Rev. Plant Physiol. 33, 403–430.Google Scholar
  40. Compton M.E. & Preece J.E. 1988 Effects of phenolic compounds on tobacco callus and blackberry shoot cultures. J. Am. Soc. Hort. Sci. 113, 160–163.Google Scholar
  41. Conn E.E. (ed.) 1981 The Biochemistry of Plants.Vol. 7. Secondary Plant Products. Academic Press, New York, London, Toronto. ISBN 0-12-675407-1Google Scholar
  42. Cooney T.P. & Nonhebel, H.M. 1991. Biosynthesis of indole-3-acetic acid in tomato shoots – measurement, mass spectral identification and incorporation of H-2 from H20-H-2 into indole-3-acetic acid, D-tryptophan and L-tryptophan, indole-3-pyruvate and tryptamine. Planta 184, 368-376Google Scholar
  43. Cox D.N. & Muday G.K. 1994 NPA binding activity is peripheral to the plasma membrane and is associated with the cytoskeleton. Plant Cell 6, 1941–1953.PubMedGoogle Scholar
  44. Curir P., Vansumere C.F., Termini A., Barthe P., Marchesini A. & Dolci M. 1990 Flavonoid accumulation is correlated with adventitious root formation in Eucalyptus gunnii Hook micropropagated through axillary bud stimulation. Plant Physiol. 92, 1148–1153.PubMedGoogle Scholar
  45. Cvikrová M., Malá J., Hrubcová M., Eder J., Zon J.& MacháCová, I. 2003 Effect of inhibition of biosynthesis of phenylpropanoids on sessile oak somatic embryogenesis.- Plant Physiol. Biochem. 41, 251–259.Google Scholar
  46. Cvikrova M., Hrubcova. M, Eder J. & Binarova P. 1996 Changes in the levels of endogenous phenolics, aromatic monoamines, phenylalanine ammonia-lyase, peroxidase and auxin oxidase activities during initiation of alfalfa embryogenic and non-embryogenic calli. Plant Physiol. and Biochem. 34, 853–861.Google Scholar
  47. Davies, P.J. (ed.) 1995. Plant Hormones. Physiology, Biochem-istry and Molecular Biology, 2nd.Ed., Kluwer Acad. Publ., Dordrecht, The Nethrelands.Google Scholar
  48. Davies P.J. 2004 Regulatory factors in hormone action: Level, location and signal transduction. pp. 16-35 in: Davies P.J. (ed.) Plant Hormones, Kluwer Academic Publishers, Dordrecht..Google Scholar
  49. Davey M.R., Fowler M.W. & Street H.E. 1971 Cell clones contrasted in growth, morphology and pigmentation iso-lated from a callus culture of Atropa belladonnavar. lutea. Phytochem. 10, 2559–2575.Google Scholar
  50. Delbarre A., Muller P., Imhoff V. & Guern J. 1996 Comparison of the mechanisms controlling uptake and accumulation of 2,4-dichlorophenoxyacetic acid, naphthalene-1-acetic acid, and indole-3-acetic acid in suspension-cultured tobacco cells. Planta 198, 532–541.Google Scholar
  51. Delbarre A., Muller P., Parry G., Swarup R. Marchant A., Bennett M. & Perrot-Rechenmann C. 2000 Characterisation and physiological effects of auxin influx carrier inhibitors. pp. 14-15 in EMBO Workshop on Auxin, 13-19 May 2000, Calcatoggio, France.Google Scholar
  52. Desai H.V., Bhatt P.N. & Mehta A.R. 1986 Plant regeneration of Sapindus trifoliatus L. (soapnut) through somatic embryogenesis. Plant Cell Rep. 5, 190–191.Google Scholar
  53. Dharmasiri N & Estelle M. 2004. Auxin signaling and regulated protein degradation. Trends Plant Sci. 9: 302-308.PubMedGoogle Scholar
  54. Dobrev P., Petkov P. Svetleva D., Ivanova A., Djilianov D., Petkova S. & Atanassov A. 2001 Analysis of some endogenous plant hormones during induction of somatic embryogenesis in common bean (Phaseolus vulgaris L.). Biotechnol. Biotechnol. Equip. 15, 17–22.Google Scholar
  55. Druart PH., Kevers CL., Boxus PH. & Gaspar TH. 1982 In vitro promotion of root formation by apple shoots through darkness effect on endogenous phenols and peroxidases. Z. Pflanzenphysiol. 108, 429–436.Google Scholar
  56. Dunlap J.R., Kresovich S. & McGee R.E. 1986 The effect of salt concentration on auxin stability in culture media. Plant Physiol. 81, 934–936.PubMedGoogle Scholar
  57. Eckardt N.A. 2001 New insights into auxin biosynthesis. Plant Cell 13, 1–3.PubMedGoogle Scholar
  58. Edwards K.L. & Goldsmith M.H.M. 1980 pH-dependent accumulation of indoleacetic acid by corn coleoptile sections. Planta 147, 457–466.Google Scholar
  59. Elliot M.C., Maloney M.M. & Hall J.F. 1978 Auxin relations in Sycamore cell suspension cultures. Plant Physiol. 61, (Suppl.) 45 (Abst. 244).Google Scholar
  60. Engvild K.C. 1985 Pollen irradiation and possible gene transfer in Nicotiana species. Theor. Appl. Genet. 69, 457–461.Google Scholar
  61. Estelle M. 1999. Auxin perception and signal transduction. - pp. 411-420 in Hooykaas P.J.J., Hall M.A., Libbenga K.R. (eds.) Biochemistry and Molecular Biology of Plant Hormones. Elsevier, Amsterdam.Google Scholar
  62. Faivre-Rampant O., Kevers C. & Gaspar, T. 2000 IAA-oxidase activity and auxin protectors in nonrooting, rac mutant shoots of tobacco in vitro. Plant Sci. 153, 73–80.Google Scholar
  63. Fakhrai H., Fakhrai F. & Evans P.K. 1989 In vitro culture and plant regeneration in Vicia faba subsp. equina (var. Spring Blaze). J. Exp. Bot. 40, 813–817.Google Scholar
  64. Feher A., Pasternak T., Otvos K., Miskolczi P. & Dudits D. 2002 Induction of embryogenic competence in somatic plant cells: a review. Biologia 57, 5–12.Google Scholar
  65. Feng K. & Linck A.J. 1970 Effects of N-1-naphthylphthalamic acid on the growth and bud formation of tobacco callus grown in vitro. Plant Cell Physiol. 11, 589–598.Google Scholar
  66. Feucht W. & Johal C.S. 1977 Effect of chlorogenic acids on the growth of excised young stem segments of Prunus avium. Acta Hort. 78, 109–114.Google Scholar
  67. Feucht W. & Nachit M. 1977 Flavolans and growth-promoting catechins in young shoot tips of Prunus species and hybrids. Physiol. Plant. 40, 230–234.Google Scholar
  68. Feucht W. & Nachit M. 1978 Flavenol glycosides of different species and hybrids from the Prunus section Eucerasus and the growth-promoting activity of quercetin derivatives. Scientia Hort. 8, 51–56.Google Scholar
  69. Feucht W. & Schmid P.P.S. 1980 Effect of ortho-dihydroxy-phenols on growth and protein pattern of callus cultures. Physiol. Plant. 50, 309–313.Google Scholar
  70. Fiola J.A., Chin C. & Pollack B.L. 1978 Effect of a-(p-chlorophenoxy) isobutyric acid on regeneration of eggplant from callus tissue. HortScience 13, 354 (Abst. 125).Google Scholar
  71. Find J., Grace L. & Krogstrup P. 2002 Effect of anti-auxins on maturation of embryogenic tissue cultures of Nordmanns fir (Abies nordmanniana). Physiol. Plant. 116, 231–237.PubMedGoogle Scholar
  72. Fischer C. & Neuhaus G. 1996 Influence of auxin on the establishment of bilateral symmetry in monocots Plant J. 9, 659–669.Google Scholar
  73. Forest J.C. & Wightman F. 1972. Amino acid metabolism in plants. III. Purification and some properties of a multispecific aminotransferase isolated from bushbean seedlings (Phaseolus vulgaris L.). Can. J. Biochem. 50, 813–829.PubMedGoogle Scholar
  74. Friedman R., Altman A. & Bachrach U. 1985 Polyamines and root formation in mung bean hypocotyl cuttings. II. Incorporation of precursors into polyamines. Plant Physiol. 79, 80–83.Google Scholar
  75. Friml J. & Palme K. 2002. Polar auxin transport - old questions and new concepts? Plant Mol. Biol. 49, 273–284.PubMedGoogle Scholar
  76. FRIML, J. 2003. Auxin transport – shaping the plant. Curr. Opin. Plant. Biol. 6, 1–6.Google Scholar
  77. Fujimura T. & Komamine A. 1979 Involvement of endogenous auxin in somatic embryogenesis in a carrot cell suspension culture. Z Pflanzenphysiol. 95, 13–19.Google Scholar
  78. Fujisawa Y., Kato H., Iwasaki Y. 2001. Structure and function of heterotrimeric G proteins in plants. Plant Cell Physiol. 42, 789–794.PubMedGoogle Scholar
  79. Fujiwara A. (ed.) 1982 Plant Tissue Culture 1982. Proc. 5th. Int. Cong. Plant Tiss. Cell Cult., Japan. Assoc. Plant Tissue Culture, Japan.Google Scholar
  80. Funada R., Kubo T., Tabuchi M., Sugiyama T. & Fushitani M. 2001 Seasonal variations in endogenous indole-3-acetic acid and abscisic acid in the cambial region of Pinus densifloraSieb. et Zucc. stems in relation to early-wood/latewood transition and cessation of tracheid production. Holzforschung 55, 128–134.Google Scholar
  81. Furuya M., Galston A.W. & Stowe B.B. 1962 Isolation from peas of co-factors and inhibitors of indole-3-acetic acid oxidase. Nature 193, 456–457.PubMedGoogle Scholar
  82. Gad A.E., Ben-Efraim I., Yavzury M., Weinberg C. & Friedman G. 1988 Improvement of cutting quality by 4-chlororesorcinol. Comb. Proc. Int. Plant Prop. Soc. 37, 119–123.Google Scholar
  83. Galweiler L., Changhui G., Muller A., Wisman E., Mendgen K., Yephremov A. & Palme K. 1998 Regul-ation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science 282, 2226–2230.PubMedGoogle Scholar
  84. Genovesi A.D. & Collins G.B. 1982 In vitro production of haploid plants of corn via anther culture. Crop Sci. 22, 1137–1144.Google Scholar
  85. Gibson R.A., Schneider E.A. & Wightman F. 1972 Biosynthesis and metabolism of indolyl-3-acetic acid. II. In vivo experiments with 14C-labelled precursors of IAA in tomato and barley shoots. J. Exp. Bot. 23, 381–399.Google Scholar
  86. Goldsmith M.H.M. 1977 The polar transport of auxin. Annu. Rev. Plant Physiol. 28, 439–478.Google Scholar
  87. Grambow H.J. & Langenbeck-Schwich B. 1983 The relationship between oxidase activity, peroxidase activity, hydrogen peroxide, and phenolic compounds in the degradation of indole-3-acetic acid in vitro. Planta 157, 131–137.Google Scholar
  88. Gray D.J. & Conger B.V. 1985 Influence of dicamba and casein hydrolysate on somatic embryo number and culture quality in cell suspensions of Dactylis glomerata (Gramineae). Plant Cell Tiss. Organ Cult. 4, 123–133.Google Scholar
  89. Grosser J.W. & Chandler J.L. 1986 In vitro multiplication of Swingle citrumelo rootstock with coumarin. HortScience 21, 518–520.Google Scholar
  90. Grunewaldt J. 1977 Adventivknospenbildung und Pflanzen-regeneration bei Gesneriaceae in vitro. Gartenbauwiss. 42, 171-175.Google Scholar
  91. Guilfoyle T.J, & Hagen G. 2001. Auxin response factors. J. Plant Growth Regul. 20: 281-291.Google Scholar
  92. Guilfoyle T.J. 1999 Auxin-regulated genes and promoters. pp. Hooykaas P.J.J., Hall M.R. & Libbenga K.R. (eds) Biochemistry and Molecular Biology of Plant Hormones. Elsevier Science B.V., Amsterdam.Google Scholar
  93. Guan H.Y. & De Klerk G-J. 2000 Stem segments of apple microcuttings take up auxin predominantly via the cut surface and not via epidermal surface. Sci. Hort. 86, 23–32.Google Scholar
  94. Guan H.Y., Huisman P. & De Klerk, G.-J. 1997 Rooting of apple stem slices in vitro is affested by indoleacetic-acid depletion of the medium. Angewandte Botanik 71, 80–84.Google Scholar
  95. Gur A., Gad A.E. & Haas E. 1988 Rooting of apple rootstock clones as related to phenols and their oxidation. Acta Hort. 227, 160–166.Google Scholar
  96. Hackett W.P. 1970 The influence of auxin, catechol and methanolic tissue extracts on root initiation in aseptically cultured shoot apices of the juvenile and adult forms of Hedera helix. J. Am. Soc. Hort. Sci. 95, 398–402.Google Scholar
  97. Hagen G., Guilfoyle T.J. & Gray W.M. 2004 Auxin signal transduction. pp. 282-303 in Davies P.J. (ed.) Plant Hormones. Kluwer T. Academic Publishers, Dordrecht.Google Scholar
  98. Hager A., Menzel H. & Krauss A. 1971 Versuche und Hypothese zur Primärwirkung des Auxins bei Streckungs-wachstum. Planta 100, 47–75.Google Scholar
  99. Hammerschlag F. 1982 Factors influencing in vitro multiplication and rooting of the plum rootstock myrobalan (Prunus cerasifera Ehrh.). J. Am. Soc. Hort. Sci. 107, 44–47.Google Scholar
  100. Hanower J. & Hanower P. 1984 Inhibition et stimulation en culture in vitro De l’embryogenése des souches issues d’explant foliaires De palmier á l’huile. Compt. Rend. Acad. Sci. Paris 298, ser. III 45-48.Google Scholar
  101. Haramaki C. 1971 Tissue culture of Gloxinia Comb. Proc. Int. Plant Prop. Soc. 21, 442–448.Google Scholar
  102. Hellmann H. & Estelle M. 2002 Plant development: Regulation by protein degradation. Science 297, 793–797.PubMedGoogle Scholar
  103. Hemerly A., Ferreira P., Engler J., Engler G., Inze D. & Vanmontagu M. 1993 The control of cell cycle in Arabidopsis plant cell cultures. J. Plant Res. 51-56 Sp. Iss. 3.Google Scholar
  104. Henke R.R., Hughes, K.W., Constantin M.J., Hollaender A.A. & Wilson C.M. (eds.) 1985 Tissue Culture in Forestry and Agriculture. Plenum Press, New York, London.Google Scholar
  105. Hess C.E. 1969 Internal and external factors regulating root initiation. pp. 42-53 in Whittingham W.J. (ed.) 1969 Root Growth. Butterworths, London.Google Scholar
  106. Heyser J.W., Dykes T.A., Demott K.J. & Nabors M.W. 1983 High frequency, long-term regeneration of rice from callus culture. Plant Sci. Lett. 29, 175–182.Google Scholar
  107. Hildebrandt A.C., Wilmar J.C., Johns H. & Riker A.J. 1963 Growth of edible chlorophyllous plant tissues in vitro. Am. J. Bot. 50, 248–254.Google Scholar
  108. Hinman R.L. & Lang J. 1965 Peroxidase-catalyzed oxidation of indole-3-acetic acid. Biochemistry 4, 144–158.PubMedGoogle Scholar
  109. Hopkins W.G. 1995 Introduction to Plant Physiology. John Wiley & sons, New York, pp. 464.Google Scholar
  110. Hoque A. & Arima S. 2002 Overcoming phenolic accumulation during callus induction and in vitro organogenesis in water chestnut (Trapa japonica Flerov). In Vitro Cell Develop. Biol. 38, 342–346.Google Scholar
  111. Hrubcova M., Cvikrova M., Eder J., Zon J. & Machackova I. 2000 Effect of inhibition of phenyl-propanoid biosynthesis on peroxidase and IAA-oxidase activities and auxin content in alfalfa suspension cultures. Plant Physiol. Biochem. 38, 949–956.Google Scholar
  112. Hunter C.S. 1979 In vitro culture of Cinchona ledgeriana L. J. Hort. Sci. 54, 111–114.Google Scholar
  113. Hutchinson J.F. 1985 Effect of explant type on shoot proliferation and physical support on root initiation for a range of horticultural species. pp. 327-328 in Henke et al. (eds.) 1985 (q.v.).Google Scholar
  114. Imbert M.P. & Wilson L.A. 1970 Stimulatory and inhibitory effects of scopoletin on IAA oxidase preparations from sweet potato. Phytochem. 9, 1787–1794.Google Scholar
  115. Imhoff V., Muller P., Guern J. & Delbarre A. 2000 Inhibitors of the carrier-mediated influx of auxin in suspension-cultured tobacco cells. Planta 210: 580-588.PubMedGoogle Scholar
  116. Irvine J.E., Fitch M. & Moore P.H. 1983 The induction of callus in sugarcane tissue cultures by selected chemicals. Plant Cell Tiss. Organ Cult. 2, 141–149.Google Scholar
  117. Ishikawa, K., Kamada, H., Yamaguchi, I., Takahashio, N. & Harada, H. 1988. Morphology and hormone levels of tobacco and carrot tissues transformed by Agrobacterium tumefaciens. 1. Auxin and cytokinin contents of cultured tissue transformed with wild-type and mutant Ti plasmid. Plant Cell Physiol. 29: 461-466Google Scholar
  118. James D.J. & Thurbon I.J. 1979 Rapid in vitro rooting of the apple rootstock M.9. J. Hort. Sci., 54, 309–311.Google Scholar
  119. James D.J. & Thurbon I.J. 1981a Phenolic compounds and other factors controlling rhizogenesis in vitro in the apple rootstocks M.9 and M.26. Z. Pflanzenphysiol. 105, 11–20.Google Scholar
  120. James D.J. & Thurbon I.J. 1981b Phenolic compounds and other factors controlling rhizogenesis in vitro in the apple rootstocks M.9 and M.26. Z. Pflanzenphysiol. 105, 11–20.Google Scholar
  121. James D.J. & Wakerell I.J. 1982 The control of rhizogenesis in vitro in difficult-to-root apple rootstocks. pp. 187-188 in Fujiwara A. (ed.) 1982 (q.v.).Google Scholar
  122. James D.J. 1979 The role of auxins and phloroglucinol in adventitious root formation in Rubus and Fragaria grown in vitro. J. Hort. Sci. 54, 273–277.Google Scholar
  123. James D.J. & Thurbon I.J. 1981a Phenolic compounds and other factors controlling rhizogenesis in vitro in the apple rootstocks M.9 and M.26. Z. Pflanzenphysiol. 105, 11–20.Google Scholar
  124. James D.J. & Thurbon I.J. 1981b Phenolic compounds and other factors controlling rhizogenesis in vitro in the apple rootstocks M.9 and M.26. Z. Pflanzenphysiol. 105, 11–20.Google Scholar
  125. Jarret R.L., Fisher J.B. & Litz R.E. 1985 Organ formation in Musa tissue cultures. J. Plant Physiol. 121, 123–130.Google Scholar
  126. Jelaska S., Rengel Z. & Cesar V. 1984 Plant regeneration from mesocotyl callus of Hordeum vulgare L. Plant Cell Rep. 3, 125–129.Google Scholar
  127. John P.C.L., Zhang K., Dong C., Diederich L. & Wightman F. 1993 P34(CDC2) related proteins in control of cell-cycle progression. The switch between division and differentiation in tissue development and stimulation and division by auxin and cytokinin. Austr. J. Plant Physiol. 20, 503–526.Google Scholar
  128. Jones A.M. 1994 Auxin-binding proteins. Annu. Rev. Plant Physiol. Plant Mol. Biol. 45, 393–420.Google Scholar
  129. Jones O.P. & Hatfield S.G.S. 1976 Root initiation in apple shoots cultured in vitro with auxins and phenolic compounds. J. Hort. Sci. 51, 495–499.Google Scholar
  130. Jones O.P. & Hopgood M.E. 1979 The successful propagation in vitro of two rootstocks of Prunus: the plum rootstock Pixy (P. institia) and the cherry rootstock F.12/1 (P. avium). J. Hort. Sci. 54, 63–66.Google Scholar
  131. Jones O.P. & James D.J. 1979 Propagation in vitro of apple and other woody fruit plants. In Vitro 15, 210 (Abst.195).Google Scholar
  132. Jones O.P. 1976 Effect of phloridzin and phloroglucinol on apple shoots. Nature 262, 392-393; 724.Google Scholar
  133. Jones O.P. 1979 Propagation in vitro of apple trees and other woody fruit plants: methods and applications. Sci. Hort. 30, 44–48.Google Scholar
  134. Jones O.P., Hopgood M.E. & O’Farrell D. 1977 Propa-gation in vitro of M.26 apple root stocks. J. Hort. Sci. 52, 235–238.Google Scholar
  135. Jones O.P., Pontikis C.A. & Hopgood M.E. 1979 Propa-gation in vitro of five apple scion cultivars. J. Hort. Sci. 54, 155–158.Google Scholar
  136. Jouanneau J.P. 1971 Côntrole par les cytokinines De la syn-chronisation des mitoses dans les cellules De tabac. Exp. Cell Res. 67, 329–337.PubMedGoogle Scholar
  137. Kaparakis G. & Alderson P.G. 2003 Differential callus type formation by auxins and cytokinin in in vitro cultures of pepper (Capsicum annuum L.).- Plant Biosystems 137, 275–280.Google Scholar
  138. Kefeli V.I. & Kadyrov C.Sh. 1971 Natural growth inhibitors, their chemical and physiological properties. Annu. Rev. Plant Physiol. 22, 185–196.Google Scholar
  139. Kefford N.P. & Caso O.H. 1972 Organ regeneration on excised roots of Chondrilla juncea and its chemical regulation. Aust. J. Biol. Sci. 25, 691–706.Google Scholar
  140. Kende H. 1993 Ethylene biosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 44, 283–307.Google Scholar
  141. Kepinski, S. & Leyser, O. 2002. Ubiquitination and auxin signaling: a degrading story. Plant Cell 14: 81-95.Google Scholar
  142. Kevers C., Gaspar T., Dommes J. 2002 The beneficial role of different auxins and polyamines at successive stages of somatic embryo formation and development of Panax ginseng in vitro. Plant Cell Tiss. Org. Cult. 70, 181–188.Google Scholar
  143. Kim Y.S., Hahn E.J., Yeung E.C. & Paek, K.Y. 2003 Lateral root development and saponin accumulation as affected by IBA or NAA in adventitious root cultures of Panax ginsengCA Meyer. In Vitro Cell. Develop. Biol. 39, 245–249.Google Scholar
  144. Kiyosue T., Kamada H. & Harada H. 1989 Induction of somatic embryogenesis from carrot seed by hypochlorite treatment. Plant Tiss. Cult. Lett. 6, 138–143.Google Scholar
  145. Kiyosue T., Takano K., Kamada H. & Harada H. 1990 Induction of somatic embryogenesis in carrot by heavy metal ions. Can. J. Bot. 68, 2301–2303.Google Scholar
  146. Klee H.J., Horsch R.B., Hinchee M.A., Hein M.B. & Hoffmann N.L. 1987 The effects of overproduction of 2 Agrobacterium tumefaciens T-DNA auxin biosynthetic gene products in transgenic Petunia plants. Genes & Develop. 1, 86–96.Google Scholar
  147. Klems M., Truksa M., Machackova I., Eder J. & Prochazka S. 1998 Uptake, transport and metabolism of C14-2,4-dichlorophenoxyacetic acid (C14-2,4-D) in cucumber (Cucumis sativus L.) explants Plant Growth Regul. 26, 195–202.Google Scholar
  148. Koens K.B., Nicoloso F.T., Van Vliet T.B., Harteveld M., Boot C.J.M., Van Iren F., Mulder P., Libbenga K.R. & Kijne J.W. 1995 Kinetics of 2,4-dichlorophenoxyacetic acid content in an auxin-dependent suspension culture of Nicotiana tabacum cells J. Plant Physiol. 147, 383–390.Google Scholar
  149. Kokubo T., Ambe-Ono Y., Nakamura M., Ishida H., Yamakawa T. & Kodama T. 2001 Promotive effect of auxins on UDP-glucose: Flavonol glucosyltransferase activity in Vitis sp cell cultures. J. Biosci. Bioeng. 91, 564–569.PubMedGoogle Scholar
  150. Kooi L.T., Keng C.L. & Hoe C.T.K. 1999 In vitro rooting sentang shoots (Azadirachta excelsa L.) and acclimatization of the plantlets. In Vitro Cell. Develop. Biol. 35, 396–400.Google Scholar
  151. Kovtun Y., Chiu W.-L., Zeng W. & Sheen J. 1998 Suppression of auxin signal transduction by a MAPK cascade in higher plants. Nature 395, 716–720.PubMedGoogle Scholar
  152. Krikorian A.D., Singh M. & Quinn C.E. 1982 Aseptic micropropagation of Cinchona: Prospects and problems. pp. 167-174 in Rao A.N. (ed.) 1982 Tissue Culture of Economically Important Plants.Proc. Int. Symp., Singapore, 1981. COSTED and ANBS Publications.Google Scholar
  153. Kutáéek M. 1985 Auxin biosynthesis and its regulation on the molecular level. Biol. Plant. 27, 145–153.Google Scholar
  154. Lang G.A. & Schwartz R.F. 1981 Effects of a bacterial contamination on rooting and growth of in vitro Nephrolepsis cultures, and isolation and identification of causal organism. HortScience 16, 463 (Abst. 471).Google Scholar
  155. Lavee S. & Avidan N. 1982 Growth responses of tree callus to chlorogenic acid and related phenolic substances. pp. 165-168 in Fujiwara A. (ed.) 1982 (q.v.).Google Scholar
  156. Law D.M. & Davies P.J. 1990 Comparative indole-3-acetic acid levels in the slender pea and other pea phenotypes. Plant Physiol. 93, 1539–1543.PubMedGoogle Scholar
  157. Lazzeri P.A., Hildebrand D.F., Sunega J., Williams E.G. & Collins G.B. 1988 Soybean somatic embryogenesis: interactions between sucrose and auxin. Plant Cell Rep. 7, 517–520.Google Scholar
  158. Lee T.T. & Skoog F. 1965 Effects of hydroxybenzoic acids on indoleacetic acid inactivation by tobacco callus extracts. Physiol. Plant. 18, 577–585.Google Scholar
  159. Lee T.T. 1980 Effects of phenolic substances on metabolism of exogenous indole-3-acetic acid in maize stems. Physiol. Plant. 50, 107–112.Google Scholar
  160. Leljak-Levanic D., Bauer N., Mihaljevic S. & JELASKA, S. 2004 Changes in DNA methylation during som-atic embryogenesis in Cucurbita pepo L. Plant Cell Rep. 23, 120–127.PubMedGoogle Scholar
  161. Leyser H.M.O., Pickett F.B., Dharmasiri S. & Estelle M. 1996 Mutation in AXR3 gene of Arabidopsis result in altered auxin response including ectopic expression from the SAUR-AC1 promoter. Plant J. 10, 403–413.PubMedGoogle Scholar
  162. Leyser O. 2001. Auxin signalling: the beginning, the middle and the end. Curr. Op. Plant Biol. 4, 382–386.Google Scholar
  163. Li Y., Shi, X.Y., Strabala, T.J., Hagen, G. & Guilfoyle, T.J. 1994. Transgenic tobacco plants that over-produce cytokinins show increased tolerance to exogenous auxin and auxin transport inhibitors. Plant Science 100, 9-14Google Scholar
  164. Libbenga K.R. & Mennes A.M. 1995 Hormone binding and signal transduction. pp. 272-297 in Davies P.J. (ed.) Plant Hormones: Physiology, Biochemistry and Molecular Biology. 2nd edn., Kluwer Academic Publishers, Dordrecht, Boston, London.Google Scholar
  165. Linsmaier E.M. & Skoog F. 1965 Organic growth factor requirements of tobacco tissue cultures. Physiol. Plant. 18, 100–127.Google Scholar
  166. Lipetz J. & Galston A.W. 1959 Indole acetic acid oxidase and peroxidase activities in normal and crown gall tissue cultures of Parthenocissus tricuspidata. Am. J. Bot. 46, 193–196.Google Scholar
  167. Liu C.M., Xu Z.H. & Chua N.H. 1993 Polar transport is essential for the establishment of bilateral symmetry during early plant embryogenesis. Plant Cell 5, 621-630,Google Scholar
  168. Ljung K, Hull AK, Kowalczyk M, Marchant A, Celenza J, Cohen JD, Sandberg G. 2002. Biosynthesis, conjugation, catabolism and homeostasis of indole-3-acetic acid in Arabidopsis thaliana. Plant Mol. Biol. 49, 249–272.PubMedGoogle Scholar
  169. LO Schiavo F., Pitto L., Giuliano G., Torti G., Nuti-Ronchi V., Marazziti D., Vergara R., Orselli S. & Terzi M. 1989 DNA methylation of embryogenic carrot cell cultures and its variations as caused by mutation, differentiation, hormones and hypomethylating drugs. Theor. Appl. Genet. 77, 325–331.Google Scholar
  170. Lomax T.L., Muday G.K & Rubery P.H. 1995 Auxin transport. pp. 509-530 in Davies P.J. (ed.) Plant Hormones: Physiology, Biochemistry and Molecular Biology. 2nd edn., Kluwer Academic Publishers, Dordrecht, Boston, London.Google Scholar
  171. Ludwig-Muller J. & Epstein E. 1991 Occurrence and in vivo biosynthesis of indole 3-butyric acid in corn (Zea mays L.). Plant Physiol. 97: 765-770.PubMedGoogle Scholar
  172. Maeda E. & Thorpe T.A. 1979 Effects of various auxins on growth and shoot formation in tobacco callus. Phytomorph. 29, 146–155.Google Scholar
  173. Magnus V. Nigovic B., Hangarter R.P. & Good N.E. 1992 N-(indol-3-ylacetyl)amino acids as sources of auxin in plant tissue culture. J. Plant Growth Regul. 11, 19-28Google Scholar
  174. Margara J. & Leydecker M.-T. 1978 Differents types d’organogense observe chez le Colza, Brassica napus L. var. oleifera Metzg. Compt. Rend. Acad. Sci. Paris 287D, 17-20.Google Scholar
  175. Margara J. 1977 Effets d’auxines et d’antiauxines sur la néoformation De bourgeons in vitro chez le chou-fleur (Brassica oleracea L. var. botrytis). Compt. Rend. Acad. Sci. Paris 284D, 1883-1885.Google Scholar
  176. Martin-Tanguy J. & Carre M. 1993 Polyamines in grape-vine microcuttings cultivated in vitro. Effects of amines and inhibitors of polyamine biosynthesis on polyamine levels and microcutting growth and development. Plant Growth Regul. 13, 269–280.Google Scholar
  177. Mato M.C., Rua M.L. & Ferro, E. 1988 Changes in levels of peroxidases and phenolics during root formation in Vitis cultured in vitro. Physiol. Plant. 72, 84–88.Google Scholar
  178. Mato M.C. & Vieitez A.M. 1986 Changes in auxin protectors and IAA oxidase during the rooting of chestnut shoots in vitro. Physiol. Plant. 66, 491–494.Google Scholar
  179. Meijer E.A., De Vries S.C. & Mordhorst A.P. 1999. Co-culture with Daucus carota somatic embryos reveals high 2,4-D uptake and release rates of Arabidopsis thaliana cultured cells. Plant Cell Rep. 18, 656–663.Google Scholar
  180. Michalczuk L., Ribnicky D.M., Cooke T.J. & Cohen J.D. 1992 Regulation of indole-3-acetic acid biosynthetic path-ways in carrot cell-cultures. Plant Physiol. 100, 1346–1353.PubMedGoogle Scholar
  181. Millner P.A. 2001. Heterotrimeric G-proteins in plant cell signalling. - New Phytol. 151: 165-174.Google Scholar
  182. Minocha S.C. & Nissen P. 1985 Uptake of 2,4-dichloro-phenoxyacetic acid and indole acetic acid in tuber slices of Jerusalem artichoke and potato. J. Plant Physiol. 120, 351–362.Google Scholar
  183. Minocha S.C. 1987 pH of the medium and the growth and metabolism of cells in culture. pp. 125-141 in Bonga and Durzan (eds.) 1987 Cell and Tissue Culture in ForestryVol 1. General Principles and Biotechnology. Martinus Nijhoff Publishers, Dordrecht, Boston, Lancaster. ISBN 90-247-3430-4.Google Scholar
  184. Miyata S., Suzuki Y., Kamisaka S. & Masuda Y. 1981 Effects of abscisic acid on CO2 exchange in Lemna gibba. Physiol. Plant. 51, 401–406.Google Scholar
  185. Mockaitis K. & Howell S.H. 2000. Auxin induces mito-genic activated protein kinase (MAPK) activation in roots of Arabidopsis seedlings. Plant J. 24, 785–796.PubMedGoogle Scholar
  186. Mok M.C. & Mok D.W. 1977 Genotypic responses to auxins in tissue culture of Phaseolus. Physiol. Plant. 40, 261–264.Google Scholar
  187. Monteuuis O., Bon M.C. & Berthon J.Y. 1987 Micropropagation aspects of Sequoiadendron giganteum juvenile and mature clones. Acta Hort. 212, 489–497.Google Scholar
  188. Morris D.A. 2000. Transmembrane auxin carrier systems – dynamic regulators of polar auxin transport . Plant Growth Regul. 32, 161-172,PubMedGoogle Scholar
  189. Morris D.A., Rubery P.H., Jarman J. & Sabater M. 1991 Effects of inhibitors of protein synthesis on membrane auxin transport in Cucurbita pepo L. hypocotyl segments. J. Exp. Bot. 42, 773–783.Google Scholar
  190. Morris D.A., Friml J. & Zazímalová E. 2004. The transport of auxins. Davies PJ (ed) Plant Hormones: Biosynthesis, Signal Transduction, Action! Springer/Kluwer Acad. Publ., N.Y., Dordrecht.Google Scholar
  191. Muday G.K. 2000. Interactions between the actin cytoskeleton and an auxin transport protein. pp 541-556 in Staiger C.J, Baluska F, Volkmann D, Barlow P (eds.) Actin: A dynamic framework for multiple plant cell functions. Kluwer Academic Publishers, Dordrecht.Google Scholar
  192. Muday G.K. & Delong.A. 2001 Polar auxin transport: controlling where and how much. Trends Plant Sci 6, 535–542.PubMedGoogle Scholar
  193. Murashige T. 1961 Supression of shoot formation in cultured tobacco cells by gibberellic acid. Science 134, 280.Google Scholar
  194. Murashige T. & Tucker D.P.H. 1969 Growth factor requirements of citrus tissue culture. pp. 1155-1161 in Chapman H. D. (ed.) Proc. 1st Int. Citrus Symp. Vol. 3, Univ. Calif., Riverside Publication.Google Scholar
  195. Nabors M.W., Heyser J.W., Dykes T.A. & De Mott K.J. 1983 Long-duration, high-frequency plant regeneration from cereal tissue cultures. Planta 157, 385–391.Google Scholar
  196. Nandi S.K., Tamta S. & Palni L.M.S. 2002 Adventitious root formation in young shoots of Cedrus deodara. Biol. Plant. 45, 473–476.Google Scholar
  197. Napier R.M., David K.M. & Perrot-Rechenmann C. 2002 A short history of auxin-binding proteins. Plant Mol. Biol. 49, 339–348.PubMedGoogle Scholar
  198. Negrutiu I., Jacobs M. & Gaspar Th. 1979 Leaf formation and peroxidases from Arabidopsis callus. Z. Pflanzenphysiol. 91, 119–126.Google Scholar
  199. Nemeth G. 1981 Adventitious root induction by substituted 2-chloro-3-phenyl-propionitriles in apple rootstocks cultured in vitro. Sci. Hort. 14, 253–259.Google Scholar
  200. Neumann J. 1960 The nature of the growth-promoting action of coumarin. Physiol. Plant. 13, 328–341.Google Scholar
  201. Newcomb W. & Wetherell D.F. 1970 The effects of 2,4,6-trichlorophenoxyacetic acid on embryogenesis in wild carrot tissue cultures. Bot. Gaz. 131, 242–245.Google Scholar
  202. Nissen S.J. & Sutter E.G. 1988 Stability of IAA and IBA in nutrient medium after autoclaving and after storage under various environmental conditions. HortSci. 23, 758.Google Scholar
  203. Manly J., Slovin J.P. & Cohen J.D. 2004. Auxin biosynthesis and metabolism.pp. 36-62 in Davies P.J. (ed): Plant Hormones: Biosynthesis, Signal Transduction, Action. Springer-/Kluwer Acad. Publ., New York, Dordrecht.Google Scholar
  204. Normanly J., Cohen J.D. & Fink G.R. 1993 Arabidopsis thaliana auxotrophs reveal a tryptophan-independent biosynthetic pathway for indole-3-acetic acid. Proc. Natl. Acad. Sci. USA 90, 10355–10359.PubMedGoogle Scholar
  205. Normanly J., Grisafi P., Fink G.R. & Bartel B. 1997 Arabidopsis mutants resistant to the auxin effects on indole-3-acetonitrile are defective in the nitrilase encoded by the NIT1 gene. Plant Cell 9, 1781–1790.PubMedGoogle Scholar
  206. Norris R.F. & Bukovak M.J. 1972 Effect of pH on penetration of naphthaleneacetic acid and naphtheleneacetamide through isolated pea leaf cuticle. Plant Physiol. 49, 615–618.PubMedGoogle Scholar
  207. Nyman L.P. & Arditti J. 1984 Effects of 2,3,5-triodobenzoic acid on plantlet formation from cultured tissues of Taro, Colocasia esculenta L. Schott. (Araceae). Ann. Bot. 54, 459–466.Google Scholar
  208. Okamoto I., Isogai, Y. & Koizumi, T. 1967. Isolation of indole-3- acetic acid, phenylacetic acid and several plant growth inhibitors from etiolated seedlings of Phaseolus. Chem. Pharm. Bull. 15: 159 - 163Google Scholar
  209. Oliver S.C., Venis M.A., Freedman R.B. & Napier R.M. 1995 Regulation of synthesis and turnover of maize ABP1 and observations of its passage to the plasma membrane: comparisons to BiP. Planta 197, 465–474.PubMedGoogle Scholar
  210. Pal M. & Nanda K.K. 1981 Rooting of etiolated stem segments of Populus robusta – interaction of temperature, catechol and sucrose in the presence of IAA. Physiol. Plant. 53, 540–542.Google Scholar
  211. Palme K., Hesse T., Campos N., Garbers C., Yanofsky M.F. & Schell J. 1992 Molecular analysis of an auxin binding protein gene located on chromosome 4 of Arabidopsis. Plant Cell 4, 193–201.PubMedGoogle Scholar
  212. Pasternak T.P., Prinsen E., Ayaydin F., Miskolczi P., Potters G., Asard H., Van Onckelen H.A., Dudits D. & Feher, A. 2002 The role of auxin, pH, and stress in the activation of embryogenic cell division in leaf protoplast-derived cells of alfalfa. Plant Physiology 129,1807-1819.PubMedGoogle Scholar
  213. Pavlová L. & Krekule J. 1984 Fluctuations of free IAA under inductive and non-inductive photoperiods in Chenopodium rubrum. Plant Growth Regul. 2, 94–98.Google Scholar
  214. Percival F.W., Purves W.K. & Vickery L.E. 1973 Indole-3-ethanol oxidase. Kinetics, inhibition and regulation by auxins. Plant Physiol. 51, 739–743.PubMedGoogle Scholar
  215. Phillips D.J. 1961 Induction of a light requirement for the germination of lettuce seed by naringenin, and its removal by gibberellic acid. Nature 192, 240–241.Google Scholar
  216. Phillips D.J. 1962 Control of carnation streak virus by shoot tip culture. Phytopathol. 52, 747.Google Scholar
  217. Platt R.S. 1954 The inactivation of auxin in normal and tumorous tissue. Ann. Biol. 30, 349–359.Google Scholar
  218. Pontikis C.A. & Melas P. 1986 Micropropagation of Ficus carica L. HortSci. 21, 153.Google Scholar
  219. Przetakiewicz A., Orczyk W. & Nadolska-Orczyk, A. 2003 The effect of auxin on plant regeneration of wheat, barley and triticale. Plant Cell Tissue Organ Cult. 73, 245–256.Google Scholar
  220. Purves W.K. & Brown H.M. 1978 Indoleacetaldehyde in cucumber seedlings. Plant Physiol. 61, 104–106.PubMedGoogle Scholar
  221. Raven J.A. 1975 Transport of indoleacetic acid in plant cells in relation to pH and electrical potential gradients, and its significance for polar IAA transport. New Phytol. 74, 163–174.Google Scholar
  222. Raven J.A. 1979 The possible role of membrane electro-phoresis in the polar transport of IAA and other solutes in plant tissues. New Phytol. 82, 285–291.Google Scholar
  223. Rawal S.K. & Mehta A.R. 1982 Changes in enzyme activity and isoperoxidases in haploid tobacco callus during organogenesis. Plant Sci. Lett. 24, 67–77.Google Scholar
  224. Rayle D.L. & Cleland R.E. 1992 The acid growth theory of auxin-induced cell elongation is alive and well. Plant Physiol. 99, 1271-1274PubMedGoogle Scholar
  225. Rayle D.L. & Purves W.K. 1967 Conversion of indole-3-ethanol to indole-3-acetic acid in cucumber seedling shoots. Plant Physiol. 42, 1091–1093.PubMedGoogle Scholar
  226. Reddy B.O., Giridhar P. & Ravishankar G.A. 2001 In vitro rooting of Decalepis hamiltonii Wight & Arn., an endangered shrub, by auxins and root-promoting agents. Curr. Sci. 81, 1479–1482.Google Scholar
  227. Reid J.B. & Howell S.H. 1995 The functioning of hormones in plant growth and development. pp. 448-485 in Davies, J.P. (ed.) Plant Hormones, Physiology, Biology, Molecular Biology.2nd Ed., Kluwer Acad. Publ., Dordrecht, Boston, London.Google Scholar
  228. Reinecke D.M. & Bandurski R.S. 1987 Auxin biosyn-thesis and metabolism. pp. 24-42 in Davies P.J. (ed.). Plant Hormones and their Role in Plant Growth and Development. Martinus Nijjhof, Boston.Google Scholar
  229. Ribnicky D.M., Ilic N., Cohen J.D. & Cooke T.J. 1996 The effects of exogenous auxins on endogenous indole-3-acetic acid metabolism – The implications for carrot somatic embryo-genesis. Plant Physiol. 112, 549–558.PubMedGoogle Scholar
  230. Rubery P.H. & Sheldrake A.R. 1974 Carrier-mediated auxin transport. Planta 188, 101–121.Google Scholar
  231. Sachs T. 2000 Integrating cellular and organismic aspects of vascular differentiation. Plant Cell Physiol 41, 649–656.PubMedGoogle Scholar
  232. Saotome M., Shirahata K., Nishimura, R., Yahaba M., Kawaguchi M., Syono K., Kitsuwa T., Ishii Y. & Nakamura T. 1993 The identification of indole-3-acetic acid and indole-3-acetamide in the hypocotyls of Japanese cherry. Plant Cell Physiol. 34, 157–159.Google Scholar
  233. Sargent J.A. & Skoog F. 1960 Effects of indoleacetic acid and kinetin on scopoletin and scopolin levels in relation to growth of tobacco tissue in vitro. Plant Physiol. 35, 934–941.PubMedGoogle Scholar
  234. Schaeffer G.W., Buta J.G. & Sharpe F. 1967 Scopo-letin and polyphenol-induced lag in peroxidase catalyzed oxidation of indole-3-acetic acid. Physiol. Plant. 20, 342–347.Google Scholar
  235. Scherer G.F.E. & Arnold B. 1997 Inhibitors of animal phospholipase A(2) enzymes are selective inhibitors of auxin-dependent growth. Implications for auxin- induced signal transduction. Planta 202, 462–469.Google Scholar
  236. Scherer G.F.E. 2002 Secondary messengers and phospho-lipase A(2) in auxin signal transduction. Plant Mol. Biol. 49: 357-372.PubMedGoogle Scholar
  237. Sharma A.K., Prasad R.N. & Chaturvedi H.C. 1981 Clonal propagation of Bougainvillea glabra ‘Magnifica’ through shoot apex culture. Plant Cell Tiss. Organ Cult. 1, 33–38.Google Scholar
  238. Sharp W.R., Sondahl M.R., Caldas L.S. & Maraffa S.B. 1980 The physiology of in vitro asexual embryogenesis. Hort. Rev. 2, 268–310.Google Scholar
  239. Siriwardana S. & Nabors M.W. 1983 Tryptophan en-hancement of somatic embryogenesis in rice. Plant Physiol. 73, 142–146.PubMedGoogle Scholar
  240. Sheldrake A.R. 1973 The production of hormones in higher plants. Biol. Rev. 48 509-559.Google Scholar
  241. Skoog F. & Miller C. 1957 Chemical regulation of growth and organ formation in plant tissues cultured in vitro. pp. 118-140 in Symp. Soc. Exptl. Biol., Number XI, The Biological Action of Growth Substances.Google Scholar
  242. Skoog F. & Montaldi E. 1961 Auxin-kinetin interaction regulating the scopoletin and scopolin levels in tobacco tissue cultures. Proc. Natl. Acad. Sci. U.S.A. 47, 36–49.PubMedGoogle Scholar
  243. Slovin J.P., Bandurski R.S. & Cohen J.D. 1999 Auxin. pp.115-140 in Hooykaas P.J.J., Hall M.A. & Libbenga K.R. (eds).Biochemistry and Molecular Biology of Plant Hormones. Elsevier Science B.V., Amsterdam.Google Scholar
  244. Smith S.M. & Street H.E. 1974 The decline of embryogenic potential as callus and suspension cultures of carrot are serially subcultured. Ann. Bot. 38, 223–241.Google Scholar
  245. Smulders M.J.M., Janssen G.F.E., Croes A.F., Barendse G.W.M. & Wullems G.J. 1988 Auxin regulation of flower bud formation in tobacco explants. J. Exp. Bot. 39, 451–459.Google Scholar
  246. Snir I. 1983 A micropropagation system for sour cherry. Scientia Hort. 19, 85–90.Google Scholar
  247. Sobczykiewicz D. 1987 Mass propagation of raspberry plants by meristem culture. Acta Hort. 212, 607–609.Google Scholar
  248. Somers D.A., Gegenbach B.G., Biesboer D.D., Hackett W.P. & Green C.E. (ed.) 1986 Abstracts VI Int. Cong. Plant Tissue and Cell Culture. Internat. Assoc. Plant Tiss. Cult. Minneapolis, Minn.Google Scholar
  249. Stange L. 1979 Reversible blockage of the cell cycle in the meristem of Riella helicophylla (Bory et Mont.) Mont. by p-chlorophenoxyisobutyric acid (PCIB). Planta 145, 347–350.Google Scholar
  250. Stickens D., Tao W. & Verbelen J.P. 1996 A single cell model system to study hormone signal transduction. Plant Growth Regul 18, 149–154.Google Scholar
  251. Stonier T. & Yoneda Y. 1967 Stem internode elongation in the Japanese Morning Glory (Pharbitis nil Choisy) in relation to an inhibitor system of auxin destruction. Physiol. Plant. 20, 13–19.Google Scholar
  252. Stonier T. 1969 Studies on auxin protectors. VII. Association of auxin protectors with crown gall development in sunflower stems. Plant Physiol. 44, 1169–1174.Google Scholar
  253. Stonier T. 1971 The role of auxin protectors in autonomous growth. pp. 423-435 in Les Cultures De Tissus De Plantes. Coll. Int. C.N.R.S. No. 193, Paris.Google Scholar
  254. Stonier T. 1972 The role of auxin protectors in autonomous growth. pp. 423-435 in Les Cultures De Tissus De Plantes. Proc. 2nd Int. Conf. Plant Tissue Cult. Strasbourg 1970.Google Scholar
  255. Stonier T., Hudek J., Vande-Stouwe R. & Yang H.-M. 1970 Studies of auxin protectors. VIII. Evidence that auxin protectors act as cellular poisers. Physiol. Plant. 23, 775–783.Google Scholar
  256. Sundberg B., Little CH. A., Cui K. & Sandberg, G. 1991 Level of endogenous indole-3-acetic-acid in the stem of Pinus sylvestris in relation to the seasonal-variation of cambial activity. Plant Cell Environ. 14, 241–246.Google Scholar
  257. Sunderland N. & Wells B. 1968 Plastid structure and development in green callus tissues of Oxalis dispar. Ann. Bot. 32, 327–346.Google Scholar
  258. Sung Z.R. 1979 Relationship of indole-3-acetic acid and trypto-phan concentrations in normal and 5-methyltryptophan-resistant cell lines of wild carrots. Planta 145, 339–345.Google Scholar
  259. Syono K. & Furuya T. 1974 Induction of auxin-non-requiring tobacco calluses and its reversal by treatments with auxins. Plant & Cell Physiol. 15, 7–17.Google Scholar
  260. Syono K. 1979 Correlation between induction of auxin-nonrequiring tobacco calluses and increase in inhibitor(s) of IAA-destruction activity. Plant Cell Physiol. 20, 29–42.Google Scholar
  261. Tadino V.L.A., Faez J.M., Christiaens L.E., Kevers C., Gaspar T. & Dommes, J. 2003 Synthesis and activity of another seleniated auxin: 2,4-dichlorophenylselenoacetic acid. Plant Growth Regul. 40, 197–200.Google Scholar
  262. Takahashi Y., Ishida S. & Nagata T. 1995 Auxin-regulated genes. Plant Cell Physiol. 36, 383–390.Google Scholar
  263. Te-Chato S. & Lim M. 1999 Plant regeneration of mangosteen via nodular callus formation.- Plant Cell Tissue Organ Cult. 59, 89-93,Google Scholar
  264. Terzi M. & Lo Schiavo F. 1990 Developmental mutants in carrot. pp. 391-397 in Nijkamp H.I.J., Van Der Plas I.H.W. & Van Aartrijk J. (eds.) 1990 Progress in Plant Cellular and Molecular Biology. Proc. VIIth Int. Cong. on Plant Tissue and Cell Culture. Amsterdam, The Netherlands. 24-29 June 1990. Kluwer Academic Publishers, Dortrecht, Netherlands.Google Scholar
  265. Theologis A. 1986 Rapid gene regulation by auxin. Annu. Rev. Plant Physiol. 37, 407–438.Google Scholar
  266. Thimann K.V. & Mahadevan S. 1964 Nitrilase. I. Occurrence, preparation and general properties of the enzyme. Arch. Biochem. Biophys. 105, 133–141.Google Scholar
  267. Thimann K.V. 1963 Plant growth substances, present and future. Annu. Rev. Plant Physiol. 14, 1–18.Google Scholar
  268. Thomas C., Bronner R., Molinier J., Prinsen E., Van Onckelen H. & Hahne G. 2002 Immuno-cyto-chemical localization of indole-3-acetic acid during induction of somatic embryogenesis in cultured sunflower embryos. Planta 215, 577–583.PubMedGoogle Scholar
  269. Thorpe T.A. & Murashige T. 1968 Starch accum-ulation in shoot-forming tobacco callus cultures. Science 160, 421–422.PubMedGoogle Scholar
  270. Thorpe T.A. & Murashige T. 1970 Some histo-chemical changes underlying shoot initiation in tobacco callus cultures. Can. J. Bot. 48, 277–285.Google Scholar
  271. Timpte C. 2001. Auxin binding protein: curiouser and curiouser. Trends Plant Sci. 6, 586–590.PubMedGoogle Scholar
  272. Tiwari S.B., Hagen G. & Guilfoyle TJ. 2004. Aux/IAA proteins contain a potent transcriptional repression domain. Plant Cell 16: 533-543.PubMedGoogle Scholar
  273. Tryon K. 1956 Scopoletin in differentiating and non-differen-tiating cultured tobacco tissue. Science 123, 590.PubMedGoogle Scholar
  274. Tyburski J. & Tretyn A. 2004 The role of light and polar auxin transport in root regeneration from hypocotyls of tomato seedling cuttings. Plant Growth Regul. 42, 39–48.Google Scholar
  275. Ulmasov T., Hagen G. & Guilfoyle T.J. 1997a ARF1, a transcription factor that binds to auxin response elements. Science 276, 1865–1868.Google Scholar
  276. Ulmasov T., Liu Z.-B., Hagen G. & Guilfoyle T.J. 1995 Composite structure of auxin response elements. Plant Cell 7, 1611–1623.PubMedGoogle Scholar
  277. Ulmasov T., Murfett J., Hagen G. & Guilfoyle T.J. 1997b Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell 9, 1963–1971.Google Scholar
  278. Van Der Hoef L. 1980 Auxin-regulated cell enlargement . - Is there action at the level of gene expression? pp. 159-175 in: Leaver C.J. (ed.) Genome Organization and Expression in Plants, NATO Advanced Study Institutes Series A, Vol. 29, Plenum Press, New York.Google Scholar
  279. Van Der Krieken W.M., Breteler H. & Visser M.H.M. 1992 Uptake and metabolism of indolebutyric acid during root formation on Malus microcuttings. Acta Bot. Neerl. 41, 435–442.Google Scholar
  280. Vidal N., Arellano G., San-Jose M.C., Vieitez A.M. & Ballester A. 2003 Developmental stages during the rooting of in-vitro-cultured Quercus robur shoots from material of juvenile and mature origin. Tree Physiol. 23, 1247–1254.PubMedGoogle Scholar
  281. Voyiatzi C. & Voyiatzis D.G. 1988 Shoot proliferation of the rose cv. (H.T.) Dr. Verhage as influenced by apical dominance regulating substances. Acta Hort. 226, 671–674.Google Scholar
  282. Vreugdenhil D., Burgers A., Harkes P.A.A. & Libbenga K.R. 1981 Modulation of the number of mem-brane-bound auxin-binding sites during the growth of batch-cultured tobacco cells. Planta 152, 415–419.Google Scholar
  283. Walden R. & Lubenow H. 1996 Genetic dissection of auxin action: more questions than answers? Trends in Plant Sci. 1, 335–339.Google Scholar
  284. Ward S.P. & Estelle M. 2001. Auxin signalling involves regulated protein degradation by the ubiquitin-proteasome pathway. J. Plant Growth Regul. 20, 265–273.Google Scholar
  285. Weis J.S. 1967 Auxin inactivation by normal and derived tobacco tissue cultures. Adv. Front. Plant Sci. 18, 155–161.Google Scholar
  286. Welander M. & Huntrieser I. 1981 The rooting ability of shoots raised ‘in vitro’ from the apple rootstock A2 in juvenile and in adult growth phase. Physiol. Plant. 53, 301–306.Google Scholar
  287. Went F.W. 1928 Wuchsstoff und Wachstum. Rec. Trav. Bot. Neerl. 25, 1–116.Google Scholar
  288. Whiteley E. & Abbott A.J. 1977 Microvegetative propa-gation of apples. Ann. Rep. Long Ashton Res. Sta. 1976, 62–63.Google Scholar
  289. Wightman F. & Cohen J.D. 1968 Intermediate steps in the enzymatic conversion of tryptophan to IAA in cell. pp. 273-288. in Wightman F. & Setterfield G. (eds.) Biochemistry and Physiology of Plant Growth Substances. Runge Press, Ottawa.Google Scholar
  290. Woo E.J., Marshall J., Bauly J., Chen J.G., Venis M., Napier R.M. & Pickersgill RW. 2002. Crystal structure of auxin-binding protein 1 in complex with auxin. Embo J. 21, 2877–2885.PubMedGoogle Scholar
  291. Wozny A., Gwodz E. & Sweykowska A. 1973 The effect of 3- indoleacetic acid on the differentiation of plastids in callus culturs of Cichorium intybusL. Protoplasma 76, 109–114.Google Scholar
  292. Yakushiji H., Mase N. & Sato, Y. 2003 Adventitious bud formation and plantlet regeneration from leaves of fig (Ficus carica L.): J. Hort. Sci.Biotechnol. 78, 874–878.Google Scholar
  293. Yang G.P., Bhuvaneswari T.V., Joseph C.M., King M.D. & Phillips, D.A. 2002 Roles for riboflavin in the Sinorhizobium – Alfalfa association.- Molecular Plant-Microbe-Interactions 15 (5): 456-462, 2002.Google Scholar
  294. Zador E., Koves E. & Szabo M. 1985 Phenolic materials in auxin heterotroph and autotroph (habituated) tobacco callus tissues. Biochem. Physiol. Pflanz. 180, 125–131.Google Scholar
  295. Zazimalova E. & Napier R.M. 2003. Point of regulation for auxin action. Plant Cell Rep. 21: 625-634.PubMedGoogle Scholar
  296. Zazimalova E., Opatrny Z., Brezinova A. & Eder J. 1995 The effect of auxin starvation on the growth of auxin-dependent tobacco cell culture: dynamics of auxin-binding activity and endogenous free IAA content. J. Exp. Bot. 46, 1205–1213.Google Scholar
  297. Zhang C.L., Chen D.F., Elliott M.C. & Slater A. 2004 Efficient procedures for callus induction and adventitious shoot organogenesis in sugar beet (Beta vulgaris L.) breeding lines. In Vitro Cell. Develop. Biol. 40, 475–481.Google Scholar
  298. Zimmerman R.H. & Broome O.C. 1981 Phloroglucinol and in vitro rooting of apple cultivar cuttings. J. Am. Soc. Hort. Sci. 106, 648–652.Google Scholar
  299. Zimmerman R.H. 1984 Rooting apple cultivars in vitro: interactions among light, temperature phloroglucinol and auxin. Plant Cell Tiss. Organ Cult. 3, 301–311.Google Scholar
  300. Zimny J. & Lorz H. 1986 Plant regeneration and initiation of cell suspensions from root-tip derived callus of Oryza sativa L. (rice). Plant Cell Rep. 5, 89–92.Google Scholar

Copyright information

© springer 2008

Authors and Affiliations

  • Edwin F. George
    • 1
  • Michael A. Hall
    • 2
  • Geert-Jan De Klerk
    • 3
  1. 1.Merriott, SomersetUnited Kingdom
  2. 2.Institute of Biological SciencesUniversity of Wales, AberystwythUnited Kingdom
  3. 3.Plant Research InternationalWageningenThe Netherlands

Personalised recommendations