The Components of Plant Tissue Culture Media I: Macro- and Micro-Nutrients



Somatic Embryo Somatic Embryogenesis Suspension Culture Callus Culture Plant Tissue Culture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abou-Mandour A. 1977 Pharmaceutical-biological studies of the genus Harpagophytum. 2. Communication: Tissue cultures of Harpagophytum procumbens. Planta Med. 31, 238–244.PubMedGoogle Scholar
  2. Adatia M.H. & Besford R.T. 1986 The effect of silicon on cucumber plants grown in recirculating nutrient solution. Ann. Bot. 58, 343–351.Google Scholar
  3. Albert A. 1958 Metal-binding agents in chemotherapy: the activation of metals by chelation. pp. 112-138 in Cowan and Rowatt (eds.) The Strategy of Chemotherapy. Soc. for Gen. Microbiol. 8th Symp. Cambridge Univ. Press, Cambridge.Google Scholar
  4. Alderson P.G., Harbour M.A. & Patience P.A. 1987 Micropropagation of Prunus tenella cv. Firehill. Acta Hortic. 212, 463–468.Google Scholar
  5. Ali A.H.N. & Jarvis B.C. 1988 Effects of auxin and boron on nucleic acid metabolism and cell division during adventitious root regeneration. New Phytol. 108, 383- 391.CrossRefGoogle Scholar
  6. Amin M.N. & Jaiswal V.S. 1988 Micropropagation as an aid to rapid cloning of a guava cultivar. Scientia Hort. 36, 89–95.CrossRefGoogle Scholar
  7. Ammirato P.V. & Steward F.C. 1971 Some effects of the environment on the development of embryos from cultured free cells. Bot. Gaz. 132, 149–158.CrossRefGoogle Scholar
  8. Anderson J.O. 1976 Embryogenesis in wild carrot cells. In Vitro 12, 332.Google Scholar
  9. Anon 1978 Farm Chemicals Handbook, 1978. Meister Publ.Co. Willoughby, Ohio 44094.Google Scholar
  10. Anstis P.J.P. & Northcote D.H. 1973 The initiation, growth and characteristics of a tissue culture from potato tubers. J. Exp. Bot. 24, 425–441.CrossRefGoogle Scholar
  11. Armstrong C.L. & Green C.E. 1985 Establishment and maintenance of friable embryogenic maize callus and involvement of L-proline. Planta 164, 207–214.CrossRefGoogle Scholar
  12. Arnon D.I. & Stout P.R. 1939 Molybdenum as an essential element for higher plants. Plant Physiol. 14, 599–602.PubMedGoogle Scholar
  13. Arnozis P.A., Nelemans J.A. & Findenegg G.R. 1988 Phosphoendpyruvate carboxylase activity in plants grown with either NO3 - or NH4 + as inorganic nitrogen source. J. Plant Physiol. 132, 23–27.Google Scholar
  14. Asahira T. & Kano Y. 1977 Shoot formation from cultured tissue of strawberry fruits. J. Jap. Soc. Hortic. Sci. 46, 317–324.Google Scholar
  15. Asokan M.P., O’Hair S.K. & Litz R.E. 1983 In vitro plant development from bulbil explants of two Dioscorea species. HortScience 18, 702–703.Google Scholar
  16. Avila A.D., Pereyra, S.M. & ArgüEllo J.M. 1998 Nitro-gen concentration and proportion of NH4 +-N affect potato culti-var response in solid and liquid media. HortScience 33, 336–338.Google Scholar
  17. Bannerjee S. & Gupta S. 1976 Embryogenesis and different-tiation in Nigella sativa leaf callus in vitro. Physiol. Plant. 38 115-120.CrossRefGoogle Scholar
  18. Barghchi M. 1986 In vitro micropropagation of Pistacia rootstocks. Comb. Proc. Int. Plant Prop. Soc. 1985 35, 334–337.Google Scholar
  19. Barghchi M. & Alderson P.G. 1996 The control of shoot tip necrosis in Pistacia vera L. in vitro. Plant Growth Reg. 20, 31–35.CrossRefGoogle Scholar
  20. Barker A.V. & Corey K.A. 1987 Ammonium-induced ethylene evolution by horticultural crops. HortScience 22, 381.Google Scholar
  21. Barroso M., Leva A.R. & Murillo J.M. 1985 La multiplicazione del melo con la tecnica della micropropagazione. Influenza del mezza nutritivo sul contenuto di alcumi elementi minerali nel callo e negli espianti di mela cv. Golden Delicious. Riv. Ortoflorofrutti. Ital. 69, 123–131.Google Scholar
  22. Barwale U.B., Kerns H.R. & Widholm J.M. 1986 Plant regeneration from callus cultures of several soybean genotypes via embryogenesis and organogenesis. Planta 167, 473–481.CrossRefGoogle Scholar
  23. Basu A., Seth U. & Guha-Mukherjee S. 1989 Regulation of cell proliferation and morphogenesis by amino acids in Brassica tissue cultures and its correlation with threonine deaminase. Plant Cell Rep. 8, 333–335.CrossRefGoogle Scholar
  24. Bayley J.M., King J. & Gamborg O.L. 1972a The effect of the source of inorganic nitrogen on growth and enzymes of nitrogen assimilation in soybean and wheat cells in suspension cultures. Planta 105, 15- 24.CrossRefGoogle Scholar
  25. Bayley J.M., King J. & Gamborg O.L. 1972b The ability of amino compounds and conditioned medium to alleviate the reduced nitrogen. Planta 105, 25–32.CrossRefGoogle Scholar
  26. Beasley C.A., Ting I.P., Linkins A.E., Birnbaum E.H. & Delmer D.P. 1974 Cotton ovule culture: A review of progress and a preview of potential. pp. 169-192 in Street H.E. (ed.) Tissue Culture and Plant Science. Academic Press, London, New York, San Francisco.Google Scholar
  27. Behki R.M. & Lesley S.M. 1980 Shoot regeneration from leaf callus of Lycopersicon esculentum. Z. Pflanzenphysiol. 98, 83–87.Google Scholar
  28. Behrend J. & Mateles R.I. 1976 Nitrogen metabolism in plant cell suspension cultures. II. Role of organic acids during growth in ammonia. Plant Physiol. 58, 510–512.PubMedGoogle Scholar
  29. Behrendt U. & Zoglauer K. 1996 Boron controls suspensor development in embryogenic cultures of Larix decidua. Physiol. Plant. 97, 321–326.CrossRefGoogle Scholar
  30. Ben-Zioni A., Vaadia Y. & Lips S.H. 1971 Nitrate uptake by roots as regulated by nitrate reduction products of the shoots. Physiol. Plant. 24, 288–290.CrossRefGoogle Scholar
  31. Berghoef J. & Bruinsma J. 1979a Flower development of Begonia franconis Liebm. II. Effects of nutrition and growth-regulating substances on the growth of flower buds in vitro. Z. Pflanzenphysiol. 93, 345–357.Google Scholar
  32. Berghoef J. & Bruinsma J. 1979b Flower development of Begonia franconis Liebm. IV. Adventitious flower bud formation in excised inflorescence pedicels in vitro. Z. Pflanzenphysiol. 94, 407–416.Google Scholar
  33. Berthelot A. 1934 Nouvelles remarques d’ordre chimique sur le choix des milieux De culture maturels et sur la maniére De formules des milieux synthétiques. Bull. Soc. Chim. Biol. Paris 16, 1553–1557.Google Scholar
  34. Beruto M., Curir P. & Debergh P 1999 Influence of agar on in vitro cultures II. Biological performance of Ranunculus on media solidified with three different agar brands. In Vitro Cell. Dev. Biol. Plant 35, 94–101.Google Scholar
  35. Biedermann I.E.G. 1987 Factors affecting establishment and development of Magnolia hybrids in vitro. Acta Hortic. 212, 625–629.Google Scholar
  36. Birnbaum E.H., Beasley C.A. & Dugger W.M. 1974 Boron deficiency in unfertilized cotton (Gossypium hirsutum) ovules grown in vitro. Plant Physiol. 54, 931–935.PubMedGoogle Scholar
  37. BISTER-Miel F., Guignard J.-L., Bury M. & Agier C. 1985 Glutamine as an active component of casein hydrolysate: its balancing effect on plant cells cultured in phosphorus deficient medium. Plant Cell Rep. 4, 161–163.CrossRefGoogle Scholar
  38. Bhojwani S.S., Mullins K. & Cohen D 1987. Micropropa-gation of Feijoa sellowiana Berg. Acta Hort 212, 69–76.Google Scholar
  39. Blevins D.G. & Lukaszewski K.M. 1998 Boron in plant structure and function. Annu. Rev. Plant Physiol. Plant Mol. Biol. 46, 95–122.Google Scholar
  40. Bobtelsky M. & Jordan J. 1945 The metallic complexes of tartrates and citrates, their structure and behavior in dilute solutions. I. The cupric and nickelous complexes. J. Am. Chem. Soc. 67, 1824–1831.Google Scholar
  41. Bonga J.M. 1984 Adventitious shoot formation in cultures of immature female strobili of Larix decidua. Physiol. Plant. 62, 416–421.CrossRefGoogle Scholar
  42. Bonner J. & Addicott F. 1937 Cultivation in vitro of excised pea roots. Bot. Gaz. 99, 144–170.CrossRefGoogle Scholar
  43. Bouharmont J. 1961 Embryo culture of rice on a sterile medium. Euphytica 10, 283–293.CrossRefGoogle Scholar
  44. Boulay M. 1987 In vitro propagation of tree species. pp. 367-382 in Green C.E, Sommers D.A., Hackett W.P. and Biesboer D.D. (eds.) Plant Tissue and Cell Culture. Alan R. Liss, Inc., New York.Google Scholar
  45. Bouman H. & Tiekstra A. 2005 Adaptations of the mineral composition of tissue culture media on the basis of plant elemental analysis and composition of hydroponic substrates. In: Hvoslef-Eide, A.K. and Preil W. (eds) Liquid Culture Systems for in vitro Plant Propagation. Springer, Dordrecht. Pp 493-505.CrossRefGoogle Scholar
  46. Bourgin J.-P. & Nitsch J.P. 1967 Production of haploid Nicotiana from excised stamens. Ann. Physiol. Veg. 9, 377- 382.Google Scholar
  47. Bov J.M., Bov C., Whatley F.R. & Arnon D.I. 1963 Chloride requirement for oxygen evolution in photosynthesis. Z. Naturforsch. Teil B 18, 683–688.Google Scholar
  48. Bowen J.E. 1979 Boron essentiality and transport in suspension cultured sugarcane cells. Plant Physiol. 63, Suppl., 163.Google Scholar
  49. Bowen M.R., Howarth J. & Longman K.A. 1975 Effects of auxins and other factors on the rooting of Pinus contorta Dougl. cuttings. Ann. Bot. 39, 647–656.Google Scholar
  50. Boxus PH. 1974 The production of strawberry plants by in vitro micropropagation. J. Hortic. Sci. 49, 209–210.Google Scholar
  51. Brewbaker J.L. & Kwack B.H. 1963 The essential role of calcium ion in pollen germination and pollen tube growth. Am.J. Bot. 50, 859–865.CrossRefGoogle Scholar
  52. Bridson E.Y. 1978 Diets, culture media and food supplements. pp. 91-281 in Rechcigl M. Jr. (ed.) CRC Handbook Series in Nutrition and Food. Section G. Vol.3.Google Scholar
  53. Brown S., Witherell D.F. & Dougall D.K. 1976 The potassium requirement for growth and embryogenesis in wild carrot suspension cultures. Physiol. Plant. 37, 73–79.CrossRefGoogle Scholar
  54. Brownell P.F. 1979 Sodium as an essential micronutrient element for plants and its possible role in metabolism. Adv. Bot. Res. 7, 117–224.Google Scholar
  55. Broyer T.C., Carlton A.B., Johnson C.M. & Stout P.R. 1954 Chlorine - a micronutrient element for higher plants. Plant Physiol. 29, 526–532.PubMedGoogle Scholar
  56. Burkholder P.R. & Nickell L.G. 1949 Atypical growth of plants. I. Cultivation of virus tumors of Rumex on nutrient agar. Bot. Gaz. 110, 426–437.Google Scholar
  57. Burstrom H. 1960 Influence of iron and gibberellic acid on the light sensitivity of roots. Physiol. Plant. 13, 597–615.CrossRefGoogle Scholar
  58. Burstrom H. 1961 Growth action of EDTA in light and darkness. Physiol. Plant. 14, 354–377.CrossRefGoogle Scholar
  59. Burstrom H. 1963 Growth regulation by metals and chelates. Adv. Bot. Res. 1, 73–100.Google Scholar
  60. Buwalda F. & Greenway H. 1989 Nitrogen uptake and growth of wheat during O2 deficiency in root media containing NO3 - only, or NO3 - plus NH4 +. New Phytol. 111, 161–166.CrossRefGoogle Scholar
  61. Campbell R.A. & Durzan D.J. 1975 Induction of multiple buds and needles in tissue cultures of Picea glauca. Can. J. Bot. 53, 1652–1657.CrossRefGoogle Scholar
  62. Capitani F. & Altamura M.M. 2004 Exogenous calcium enhances the formation of vegetative buds, flowers and roots in tobacco pith explants cultured in the absence of exogenous hormones. Plant Cell Tissue Organ Cult. 77,1-10.CrossRefGoogle Scholar
  63. Carman J.G., Jefferson N.E. & Campbell W.F. 1988 Induction of embryogenic Triticum aestivum L. calli. I. Quantification of genotype and culture medium effects. Plant Cell Tissue Organ Cult. 12, 83–95.CrossRefGoogle Scholar
  64. Cattoir-Reynaerts A., Degryse E., Negrutiu I., Aerts M. & Jacobs M. 1981 Effects of aspartate-derived amino acids on growth of barley and Arabidopsis plants and callus. Z. Pflanzenphysiol. 101, 67–74.Google Scholar
  65. Chaillou S. & Chaussat R. 1986 Changes in mineral concentration of potato organ fragments. Phytomorph. 36, 263–270.Google Scholar
  66. Chaleff R.S. 1983 Induction, maintenance and differentiation of rice callus cultures on ammonium as sole nitrogen source. Plant Cell Tissue Organ Cult. 2, 29–37.CrossRefGoogle Scholar
  67. Chand S. & Roy S.C. 1981 Induction of organogenesis in callus cultures of Nigella sativa L. Ann. Bot. 48, 1–4.Google Scholar
  68. Chaney R.L., Brown J.C. & Tiffin L.O. 1972 Obligatory reduction of ferric chelates in iron uptake by soybeans. Plant Physiol. 50, 208–213.PubMedCrossRefGoogle Scholar
  69. Chee R. 1986 In vitro culture of Vitis: The effects of light spectrum, manganese sulfate and potassium iodide on morphogenesis. Plant Cell Tissue Organ Cult. 7, 121–134.CrossRefGoogle Scholar
  70. Chen Z.1984 Chapter 19 - Rubber (Hevea). pp. 546-571 in Sharp W.R., Evans D.A., Ammirato P.V. and Yamada Y. (eds.) Hand-book of Plant Cell Culture. Vol. 2. Crop Species. Macmillan Publishing Co., New York, London.Google Scholar
  71. Cheng T.-Y. 1977 Factors effecting adventitious bud formation of cotyledon culture of douglas fir. Plant Sci. Lett. 9, 179–187.CrossRefGoogle Scholar
  72. Cheng T.-Y. 1978 Clonal propagation of woody species through tissue culture techniques. Comb. Proc. Int. Plant Prop. Soc. 28, 139–155.Google Scholar
  73. Chin C. & Miller D. 1982 Some characteristics of the phosphate uptake by Petunia cells. HortScience 17, 488.Google Scholar
  74. Chopra R.N. & Rashid A. 1969 Auxin-cytokinin interaction in shoot-bud formation of a moss, Anoectangium thomsonii Mitt. Z. Pflanzenphysiol. 61, 192–198.Google Scholar
  75. Chroboczek-Kelker H. & Filner P. 1971 Regulation of nitrite reductase and its relationship to the regulation of nitrate reductase in cultured tobacco cells. Biochim. Biophys. Acta 252, 69–82.Google Scholar
  76. Chu C.-C., Wang C.-C., Sun C.-S., Hsu C., Yin K.-C., Chu C.-Y. & Bi F.-Y. 1975 Establishment of an efficient medium for anther culture of rice, through comparative experiments on the nitrogen sources. Sci. Sinica 18, 659–668.Google Scholar
  77. Chu C.C. & Hill R.D. 1988 An improved anther culture method for obtaining higher frequency of pollen embryoids in Triticum aestivum L. Plant Science 55, 175–181.CrossRefGoogle Scholar
  78. Ciarrocchi G., Cella R. & Nielsen E. 1981 Release of nucleotide- cleaving acid phosphatase from carrot cells grown in suspension culture. Physiol. Plant. 53, 375–377.CrossRefGoogle Scholar
  79. Clarkson D.T. & Hanson J.B. 1980 The mineral nutrition of higher plants. Annu. Rev. Plant Physiol. 31, 239–298.CrossRefGoogle Scholar
  80. Coombes A.J., Phipps N.W. & Lepp N.W. 1977 Uptake patterns of free and complexed copper in excised roots of barley (Hordeum vulgare L. var. Zephyr). Z. Pflanzenphysiol. 82, 435–439.Google Scholar
  81. Corey K.A. & Barker A.V. 1987 Physiology of ethylene evolution by tomato plants under ammmonium-induced stress. HortScience 22, 381.Google Scholar
  82. Craven G.A., Mott R.L. & Steward F.C. 1972 Solute accumulation in plant cells. IV. Effects of ammonium ions on growth and solute content. Ann. Bot. 36, 897–914.Google Scholar
  83. Cremiere L., Sbay H. & Prat D. 1987 In vitro culture of Alnus species. Acta Hortic. 212, 543–546.Google Scholar
  84. Cruickshank I.A.M., Dudman W.F., Peoples M.B. & Smith M.M. 1987 Elicitation of pisatin in pea (Pisum sativum L.) by copper-asparagine complexes. Aust. J. Plant Physiol. 14, 549-559.Google Scholar
  85. Dahleen, L.S. 1995 Improved plant regeneration from barley cultures by increased copper levels. Plant Cell Tissue Organ Cult. 43, 267–269.Google Scholar
  86. Dalton C.C., Iqbal K. & Turner D.A. 1983 Iron phosphate precipitation in Murashige and Skoog media. Physiol. Plant. 57, 472–476.CrossRefGoogle Scholar
  87. Damiano C. 1980 Strawberry micropropagation. pp. 11-22 in Proceedings of the Conference on Nursery Production of Fruit Plants – Applications and Feasibility.USDA, ARS, ARR-NE-11.Google Scholar
  88. David A. 1972 Effets De diverses solutions minérales sur la prolifération des tissus De Pin maritime en culture in vitro. Compt. Rend. Acad. Sci. Paris 275D, 2857-2860.Google Scholar
  89. Davis D.G., Olson P.A & Stolzenberg R.L. 1988 Org-anogenesis in cell cultures of leafy spurge (Euphorbiaceae) accessions from Europe and North America. Plant Cell Rep. 7, 253–256.CrossRefGoogle Scholar
  90. Davis M.J., Baker R. & Hanan J.J. 1977 Clonal multiplication of carnation by micropropagation. J. Am. Soc. Hortic. Sci. 102, 48–53.Google Scholar
  91. De Greef W., Delon R., De Block M., Leemans J. & Botterman J. 1989 Evaluation of herbicide resistance in transgenic crops under field conditions. Nat. Biotechnol. 7, 61–64.CrossRefGoogle Scholar
  92. De Jong A.W. & Bruinsma J. 1974 Pistil development in Cleome flowers III. Effects of growth-regulating substances on flower buds of Cleome iberidella Welv. ex Oliv. grown in vitro. Z. Pflanzenphysiol. 73, 142–151.Google Scholar
  93. De Jong A.W., Smit A.L. & Bruinsma J. 1974 Pistil development in Cleome flowers II. Effects of nutrients on flower buds of Cleome iberidella Welv. ex Oliv. grown in vitro. Z. Pflanzenphysiol. 72, 227–236.Google Scholar
  94. De Klerk G.J. & Wijnhoven F. 2005 Water retention capacity of tissue cultured plants. Prop. Orn. Plants 5, 14–18.Google Scholar
  95. Debergh P.C. 1988 Micropropagation of woody species -state of the art on in vitro aspects. Acta Hortic. 227, 287–295.Google Scholar
  96. Dencso I. 1987 Factors influencing vitrification of carnation and conifers. Acta Hortic. 212, 167–176.Google Scholar
  97. Devlin R.M. 1975 Plant Physiology. 3rd. Edition. Van Nostrand Reinhold Co., New York.Google Scholar
  98. Dimassi K., Chouliaras V., Diamantidis G. & Therios I. 2003 Effect of iron and auxins on peroxidase activity and rooting performance of three citrus rootstocks in vitro. J. Plant Nutr. 26, 1023–1034.CrossRefGoogle Scholar
  99. Dixon N.E., Gazzola C., Blakeley R.L. & Zerner B. 1975 Jack bean urease (EC A metalloenzyme. A simple biological role for nickel? J. Am. Chem. Soc. 97, 4131–4133.PubMedCrossRefGoogle Scholar
  100. Doerschug M.R. & Miller C.O. 1967 Chemical control of adventitious organ formation in Lactuca sativa explants. Am. J. Bot. 54, 410–413.CrossRefGoogle Scholar
  101. Dougall D.K. & Verma D.C. 1978 Growth and embryo formation in wild carrot suspension cultures with ammonium ion as a sole nitrogen source. In Vitro 14, 180–182.PubMedCrossRefGoogle Scholar
  102. Dougall D.K. & Weyrauch K.W. 1980 Abilities of organic acids to support growth and anthocyanin acumulation by suspension cultures of wild carrot cells, using ammonium as the sole nitrogen source. In Vitro 16, 969–975.CrossRefGoogle Scholar
  103. Dougall D.K. 1977 Current problems in the regulation of nitrogen metabolism in plant cell cultures. pp. 76-84 in Barz W., Reinhard E. and Zenk M.H. (eds.) Plant Tissue Culture and its Biotechnological Application. Springer-Verlag, Berlin, Heidel-berg, New York.Google Scholar
  104. Dougall D.K. 1981 Media factors affecting growth. pp.277-280 in Constantin M.J., Henke R.R., Hughes K.W. and Conger B.V. Propagation of Higher Plants through Tissue Culture: Emerging Technologies and Strategies. Permagon Press, Oxford, New York, Sydney. ISBN 0098-8472.Google Scholar
  105. Drew R.A. 1987 The effects of medium composition and cultural conditions on in vitro root initiation and growth of papaya (Carica papaya L.). J. Hortic. Sci. 62, 551–556.Google Scholar
  106. Drira N. & Benbadis A. 1975 Analyse, par culture d’anthéres in vitro, des potentialités androgénétique De deux espéces De citrus (Citrus medica L. et Citrus limon L. Burm. Compt. Rend. Acad. Sci. Paris 281D, 1321-1324.Google Scholar
  107. DRUART PH. 1988 Regulation of axillary branching in micropropagation of woody fruit species. Acta Hortic. 227, 369–380.Google Scholar
  108. Durzan D.J. 1976 Biochemical changes during gynosperm development. Acta Hortic. 56, 183–194.Google Scholar
  109. Durzan D.J. 1982 Nitrogen metabolism and vegetative propagation of forest trees. pp. 256-324 in Bonga J.M. and Durzan D.J (eds.) Tissue Culture in Forestry. Martinus Nijhoff/Dr. W. Junk Publishers, Dordrecht, Boston, Lancaster. ISBN 90-247-2660-3.Google Scholar
  110. Durzan D.J. 1987 Ammonia: Its analogues, metabolic products and site of action in somatic embryogenesis. pp. 92-136 in Bonga J.M. and Durzan D.J (eds.) Cell and Tissue Culture in Forestry. Vol. 2. Specific Principles and Methods: Growth and Develop-ment. Martinus Nijhoff/Dr. W. Junk Publishers, Dordrecht, Boston, Lancaster. ISBN 90-247-3431-2Google Scholar
  111. Eeuwens C.J. 1976 Mineral requirements for growth and callus initiation of tissue explants excised from mature coconut palms (Cocos nucifera) and cultured in vitro. Physiol. Plant. 36, 23–28.CrossRefGoogle Scholar
  112. Eichhorn G.L. 1980 The function of metal ions in genetic regulation. pp. 1-21 in Sigel H. (ed.) 1980 Metal Ions in Biological Systems 10. Marcel Dekker Inc. New York, Basel.Google Scholar
  113. Einset J.W. 1978 Citrus tissue culture - stimulation of fruit explant cultures with orange juice. Plant Physiol. 62, 885–888.PubMedGoogle Scholar
  114. El Badaoui H., Morard P. & Henry M 1996 Stimulation of the growth and solamargine production by Solanum paludosum multiple shoot cultures using a new culture medium. Plant Cell Tissue Organ Cult. 45, 153–158.CrossRefGoogle Scholar
  115. Eltinge E.T. & Reed H.S. 1940 The effect of zinc deficiency upon the root of Lycopersicon esculentum. Am. J. Bot. 27, 331–335.CrossRefGoogle Scholar
  116. Epstein E. 1971 Mineral Nutrition of Plants. Principles and Perspectives. John Wiley and Sons Inc., New York, London, Sydney, Toronto.Google Scholar
  117. Eriksson T. 1965 Studies on the growth requirements and growth measurements of cell cultures of Happlopapus gracilis. Physiol. Plant. 18, 976–993.CrossRefGoogle Scholar
  118. Erner Y. & Reuveni O. 1981 Promotion of citrus tissue culture by citric acid. Plant Physiol. 67, Suppl.), 27.Google Scholar
  119. Eskew D.L., Welch R.M. & Cary E.E. 1983 Nickel: an essential micronutrient for legumes and possibly all higher plants. Science 222, 621–623.PubMedCrossRefGoogle Scholar
  120. Evans D.A., Sharp W.R. & Paddock E.F. 1976 Variation in callus proliferation and root morphogenesis in leaf tissue cultures of Glycine max strain T 219. Phytomorph. 26, 379–384.Google Scholar
  121. Faye M., David A. & Lamant A. 1986 Nitrate reductase activity and nitrate accumulation in in vitro produced axillary shoots, plantlets and seedlings of Pinus pinaster. Plant Cell Rep. 5, 368–371.CrossRefGoogle Scholar
  122. Ferguson I.B. & Drbak B.K. 1988 Calcium, mineral nutrition and salinity. HortScience 23, 262–269.Google Scholar
  123. Filner P. 1965 Semi-conservative replication of DNA in a higher plant cell. Exp. Cell Res. 39, 33–39.PubMedCrossRefGoogle Scholar
  124. Finer J.J. & Nagasawa A. 1988 Development of an embryo-genic suspension culture of soybean (Glycine max Merrill.). Plant Cell Tissue Organ Cult. 15, 125–136.CrossRefGoogle Scholar
  125. Fletcher J.S. 1980 Influence of nitrate and sucrose supply on the growth and senescence of Paul’s Scarlet rose cells. Plant Physiol. 65, Suppl., 37.Google Scholar
  126. Flinn B. & Webb D.T. 1986 Effects of media components and the timing of cytokinin application on caulogenesis from Pinus strobus embryonic explants. p. 36 in Abstracts VI Intl. Cong. Plant Tissue & Cell Culture. Minneapolis, Minn.Google Scholar
  127. Freytag A.H., Anand S.C., Rao-Arell A.P. & Owens L.D. 1988 An improved medium for adventitious shoot formation and callus induction in Beta vulgaris L. in vitro. Plant Cell Rep. 7, 30–34.CrossRefGoogle Scholar
  128. Fries L. 1962 Vitamin B12 in Pisum sativum (L.). Physiol. Plant. 15, 566–571.CrossRefGoogle Scholar
  129. Fujiwara A. (ed.) 1982 Plant Tissue Culture 1982. Proc. 5th. Int. Cong. Plant Tiss. Cell Cult., Japan. Assoc. Plant Tissue Culture, Japan.Google Scholar
  130. Fukunaga Y., King J. & Child J.J. 1978 The differential effects to TCA-cycle acids on the growth of plant cells cultured in liquid media containing various nitrogen sources. Planta 139, 199–202.CrossRefGoogle Scholar
  131. Furuhashi K.F. & Takahashi Y. 1982 Glutamate dehydrogenase of green tobacco callus tissue. pp. 241-242 in Fujiwara A. (ed.) 1982 (q.v.).Google Scholar
  132. Galston A.W. & Hillman W.S. 1961 The degradation of auxin. Encyclopedia of Plant Physiology 14, 647–670.Google Scholar
  133. Gamborg O.L. & Eveleigh D.E. 1968 Culture methods and detection of glucanases in suspension cultures of wheat and barley. Can. J. Biochem. 46, 417–421.PubMedCrossRefGoogle Scholar
  134. Gamborg O.L. & Shyluk J.P. 1970 The culture of plant cells with ammonium salts as a sole nitrogen source. Plant Physiol. 45, 598–600.PubMedGoogle Scholar
  135. Gamborg O.L. & Shyluk J.P. 1981 Nutrition, media and characteristics of plant cell and tissue cultures. pp. 21-44 in Thorpe T.A. (ed.) Plant Tissue Culture: Methods and Applications in Agriculture. Academic Press, New York, London, Toronto, Sydney.Google Scholar
  136. Gamborg O.L. 1970 The effects of amino acids and ammonium on the growth of plant cells in suspension culture. Plant Physiol. 45, 372–375.PubMedCrossRefGoogle Scholar
  137. Gamborg O.L. 1982 Callus and cell culture. pp. 1-9 in Wetter L.R. and Constabel F. (eds.) Plant Tissue Culture Methods (2nd Ed.) National Res. Council of Canada, Prairie Regional Res. Lab., Saskatoon.Google Scholar
  138. Gamborg O.L. 1991 Media preparation. pp. 1-24 in Plant Tissue Culture Manual A1 Kluwer Acad. Publ., The Netherlands.Google Scholar
  139. Gamborg O.L., Constabel F. & Shyluk J.P. 1974 Organogenesis in callus from shoot apices of Pisum sativum. Physiol. Plant. 30, 125–128.CrossRefGoogle Scholar
  140. Gamborg O.L., Miller R.A. & Ojima K. 1968 Nutrient requirements of suspension cultures of soybean root cells. Exp. Cell Res. 50, 151–158.PubMedCrossRefGoogle Scholar
  141. Garton S. & Moses M.S. 1986 Production of native plants in tissue culture. Comb. Proc. Int. Plant Prop. Soc. 1985 35, 306–315.Google Scholar
  142. Gautheret R.J. 1939 Sur la possibilité De réaliser la culture indéfinie des tissus tubercule De carotte. Compt. Rend. Acad. Sci. Paris 208, 118.Google Scholar
  143. Gautheret R.J. 1942 Manuel Technique De Culture des Tissue végétaux. Masson et Cie, Paris.Google Scholar
  144. George E.F., Puttock D.J.M. & George H.J. 1987 Plant Culture Media Vol.1. Exegetics Ltd., Westbury, England.Google Scholar
  145. George E.F., Puttock D.J.M. & George H.J. 1988 Plant Culture Media Vol.2. Exegetics Ltd., Westbury, England.Google Scholar
  146. GERENDÀS J., Polacco J.C., Freyeremuth S.K. & Sattelmacher B. 1999 Signifcance of nickel for plant growth and metabolism. J. Plant Nutr. Soil Sc. 162, 241–256.CrossRefGoogle Scholar
  147. Gertsson U.E. 1988 Influence of macronutrient composition, TIBA and dark treatment on shoot formation and nitrogen content in petiole explants of Senecio hybridus. J. Hortic. Sci. 63, 497–502.Google Scholar
  148. Glasstone V.F.C. 1947 Inorganic micronutrients in tomato root tissue culture. Am. J. Bot. 34, 218–224.CrossRefPubMedGoogle Scholar
  149. Goldbach H. & Amberger A. 1986 Influence of boron deficiency on 3H-indole-3yl-acetic acid uptake and efflux in cell cultures of Daucus carota L. Plant Growth Reg. 4, 81–86.CrossRefGoogle Scholar
  150. GonçAlves S., Correia P.J., Martins-Loução M.A. & Romano A. 2005 A new medium formulation for in vitro rooting of carob tree based on leaf macronutrients concentration. Biol. Plant. 49, 277–280.CrossRefGoogle Scholar
  151. Gong M., Van De Luit A.H., Knight M.R. & Trewavas A.J. 1998 Heat-shock-induced changes in intracellular Ca2 + level in tobacco seedlings in relation to thermotolerance. Plant Physiol. 116, 429–437.CrossRefGoogle Scholar
  152. Goodwin P.B. 1966 An improved medium for the rapid growth of isolated potato buds. J. Exp. Bot. 17, 590–595.CrossRefGoogle Scholar
  153. Gray D.J., Conger B.V. & Hanning G.E. 1984 Somatic embryogenesis in suspension and suspension-derived callus cultures of Dactylis glomerata. Protoplasma 122, 196–202.CrossRefGoogle Scholar
  154. Green C.E. & Phillips R.L. 1975 Plant regeneration from tissue cultures of maize. Crop Sci. 15, 417–427.CrossRefGoogle Scholar
  155. Greenwood N.N. 1973 The Chemistry of Boron. Pergamon Texts Inorganic Chemistry Vol. 8. Pergamon Press, Oxford, New York, Toronto.Google Scholar
  156. Grimes H.D. & Hodges T.K. 1990 The inorganic NO3 -–NH4 + ratio influences plant regeneration and auxin sensitivity in primary callus derived from immature embryos of Indica rice (Oryza sativa L.). J. Plant Physiol. 136, 362–367.Google Scholar
  157. Grusak M.A. 2001 Plant macro- and micronutrient minerals. Encyclopedia of life sciences. Nature Publishing Group. www.els.netGoogle Scholar
  158. Guan H. & De Klerk G.J. 2000 Stem segments of apple microcuttings take up auxin predominantly via the cut surface and not via the epidermis. Sci. Hortic. 86, 23–32.CrossRefGoogle Scholar
  159. Gupta S., Sen B. & Bhattacharya S. 1987 Embryogen-esis and differentiation in two species of Trigonella. Phytomorph. 37, 95–101.Google Scholar
  160. Hackett W.P. 1970 The influence of auxin, catechol and meth-anolic tissue extracts on root initiation in aseptically cultured shoot apices of the juvenile and adult forms of Hedera helix. J. Am. Soc. Hort. Sci. 95, 398–402.Google Scholar
  161. Haga K.I. & Sodek L. 1987 Utilization of nitrogen sources by immature soybean cotyledons in culture. Ann. Bot. 59, 597–601.Google Scholar
  162. Hagen C.E. & Hopkins H.T. 1955 Ionic species in orthophosphate absorption by barley roots. Plant Physiol. 30, 193–199.PubMedGoogle Scholar
  163. Hahlbrock K. 1974 Correlation between nitrate uptake, growth and changes in metabolic activities of cultured plant cells. p. 363 in Street H.E. (ed.) Tissue Culture and Plant Science. Academic Press, London, New York, San Francisco.Google Scholar
  164. Halperin W. & Wetherell D.F. 1965 Ammonium requirement for embryogenesis in vitro. Nature 205, 519–520.CrossRefGoogle Scholar
  165. Halperin W. 1967 Population density effects on embryogenesis in carrot cell cultures. Exp. Cell Res. 48, 170–173.PubMedCrossRefGoogle Scholar
  166. Hannay J.W. & Street H.E. 1954 Studies on the growth of excised roots. III. The molybdenum and manganese requirement of excised tomato roots. New Phytol. 53, 68–80.CrossRefGoogle Scholar
  167. Hannay J.W. 1956 A study of the micronutrient requirements of excised roots. Ph.D. Thesis, Univ. Manchester [from Street H.E. 1966 The nutrition and metabolism of plant tissue and organ cultures. pp. 533-629 in Willmer E.N. Cells and Tissues in Culture – Methods and Physiology.Vol 3. Academic Press, London, New York].Google Scholar
  168. Harris G.P. 1956 Amino acids as sources of nitrogen for the growth of isolated oat embryos. New Phytol. 55, 253–268.CrossRefGoogle Scholar
  169. Heath O.V.S. & Clark J.E. 1956a Chelating agents as plant growth substances. A possible clue to the mode of action of auxin. Nature 177, 1118–1121.CrossRefGoogle Scholar
  170. Heath O.V.S. & Clark J.E. 1956b Chelating agents as growth substances. Nature 178, 600–601.CrossRefGoogle Scholar
  171. Heath O.V.S. & Clark J.E. 1960 Chelation in auxin action. J. Exp. Bot. 11, 167–187.CrossRefGoogle Scholar
  172. Heberle-Bors E. 1980 Interaction of activated charcoal and iron chelates in anther cultures of Nicotiana and Atropa belladonna. Z. Pflanzenphysiol. 99, 339–347.Google Scholar
  173. Heimer Y.M. & Filner P. 1971 Regulation of the nitrate assimilation pathway in cultured tobacco cells. Biochim. Biophys. Acta 230, 362–372.PubMedGoogle Scholar
  174. Heller R. 1953 Researches on the mineral nutrition of plant tissues. Ann. Sci. Nat. Bot. Biol. Vg., 11th Ser. 14, 1–223.Google Scholar
  175. Heller R. 1955 Les besoins mineraux des tissus en culture. pp. 1-21 in La Physiologie des Cultures De Tissus végétaux. Union Internationale des Sciences Biol. Series B (Colloques) 20 (1954).Google Scholar
  176. Hemberg T. 1951 Rooting experiments with hypocotyls of Phaseolus vulgaris L. Physiol. Plant. 4, 358–369.CrossRefGoogle Scholar
  177. Hepler P.K. & Wayne R.O. 1985 Calcium and plant development. Annu. Rev. Plant Physiol. 36, 397–439.CrossRefGoogle Scholar
  178. Hew C.S., Ting S.K. & Chia T.F. 1988 Substrate utilization by Dendrobium tissues. Bot. Gaz. 149, 153–157.CrossRefGoogle Scholar
  179. Hewitt E.J. & Smith T.A. 1975 Plant Mineral Nutrition. English University Press.Google Scholar
  180. Hewitt E.J. 1948 Relation of manganese and some other metals to the iron status of plants. Nature 161, 489.PubMedGoogle Scholar
  181. Hiatt A.J. 1978 Critique of absorbtion and utilization of ammonium nitrogen by plants. pp. 191-199 in Nitrogen in the Environment Vol.2. Soil-Plant-Nitrogen Relationships. Academic Press, New York, San Francisco, London. ISBN 0-12-518402-6 (v.2).Google Scholar
  182. Hildebrandt A.C., Riker A.J. & Duggar B.M. 1946 The influence of the composition of the medium on growth in vitro of excised tobacco and sunflower tissue cultures. Am. J. Bot. 33, 591–597.CrossRefGoogle Scholar
  183. Hill-Cottingham D.G. & Lloyd-Jones C.P. 1961 Absorption and breakdown of iron-ethylenediamine tetraacetic acid by tomato plants. Nature 189, 312.CrossRefGoogle Scholar
  184. Hillman W.S. 1959 Experimental control of flowering in Lemna. I. General methods. Photoperiodism in L. pepusilla 6746. Am. J. Bot. 46, 466–473.CrossRefGoogle Scholar
  185. Hillman W.S. 1961 Experimental control of flowering in Lemna. III. A relationship between medium composition and the opposite photoperiodic responses of L. perpusilla 6746 and L. gibba G3. Am. J. Bot. 48, 413–419.CrossRefGoogle Scholar
  186. Hisajima S. 1982 Multiple shoot formation from almond seeds and an excised single shoot. Agric. Biol. Chem. 46, 1091–1093.Google Scholar
  187. Hoagland D.R. & Snyder W.C. 1933 Nutrition of strawberry plant under controlled conditions. Proc. Am. Soc. Hortic. Sci. 30, 288–296.Google Scholar
  188. Holm-Hansen O., Gerloff G.C. & Skoog F. 1954 Cobalt as an essential element for blue-green algae. Physiol. Plant. 7, 665–675.CrossRefGoogle Scholar
  189. Hossain B., Hirata N., Nagatomo Y., Akashi R. & Takaki H. 1997 Internal zinc accumulation is correlated with increased growth in rice suspension culture. J. Plant Growth Regul. 16, 239–243.CrossRefGoogle Scholar
  190. Hunault G. 1985 Organic acids, pH, ammonium and nitrate interactions on the growth of Asparagus tissues cultivated in vitro. Ann. Sci. Nat. Bot. Biol. Veg.13, 63–75.Google Scholar
  191. Inoue M. & Maeda E. 1982 Control of organ formation in rice callus using two-step culture method. pp. 183-184 in Fujiwara A. (ed.) 1982 (q.v.).Google Scholar
  192. Ishii K. 1986 In vitro plantlet formation from adventitious buds on juvenile seedlings of Hinoki cypress (Chamaecyparis obtusa). Plant Cell Tissue Organ Cult. 7, 247–255.CrossRefGoogle Scholar
  193. Jakobek J.L., Backhaus R.A. & Herman K. 1986 Micropropagation of candellila, Euphorbia antisyphiliticaZucc. Plant Cell Tiss. Organ Cult. 7, 145–148.CrossRefGoogle Scholar
  194. Jacobsen L., Hannapel R.J. & Moore D.P. 1958 Non-metabolic uptake of ions by barley roots. Plant Physiol. 33, 278–282.Google Scholar
  195. Jacobson L. 1951 Maintenance of iron supply in nutrient solutions by a single addition of ferric potassium ethylene-diamine tetra-acetate. Plant Physiol. 26, 411–413.PubMedGoogle Scholar
  196. Jacobson L., Cooper B.R. & Volz M.G. 1971 The interaction of pH and aeration in Cl uptake by barley roots. Physiol. Plant. 25, 432–435.CrossRefGoogle Scholar
  197. James D.J., Passey A.J. & Malhotra S.B. 1984 Organogenesis in callus derived from stem and leaf tissues of apple and cherry rootstocks. Plant Cell Tissue Organ Cult. 3, 333–341.CrossRefGoogle Scholar
  198. Jansen M.A.K., Booij H., Schel J.H.N. & De Vries S.C. 1990 Calcium increases the yield of somatic embryos in carrot embryogenic suspension cultures. Plant Cell Rep. 9, 221–223.CrossRefGoogle Scholar
  199. Jarvis B.C. 1986 Endogenous control of adventitious rooting in non-woody cuttings. pp. 191-222 in Jackson M.B. (ed.) New Root Formation in Plants and Cuttings. Martinus Nijhoff Publ. ISBN 90 247 3260 3.Google Scholar
  200. Jarvis S.C. 1984 The effects of nitrogen supply on the absorption and distribution of copper in Red clover (Trifolium pratense L.) grown in flowing solution with a low, maintained concentration of copper. Ann. Bot. 53, 153–161.Google Scholar
  201. Jensen C.J. 1974 Produection of monoploids in barley: A progress report. pp. 153-190 in Kasha. K.J. (ed.) Haploids in Higher Plants: Advances and Potential. Univ. Guelph, Canada.Google Scholar
  202. Johnson C.M., Stout P.R., Broyer T.C. & Carlton A.B. 1957 Comparative chlorine requirements of different plant species. Plant Soil 8, 337–353.CrossRefGoogle Scholar
  203. Jones J.B. & Murashige T. 1974 Tissue culture propagation Aechmea fasciata Baker and other bromeliads. Comb. Proc. Int. Plant Prop. Soc. 24, 117–126.Google Scholar
  204. Jordan D.B. & Fletcher J.S. 1979 The relationship between NO2 - accumulation, nitrate reductase and nitrite reductase in suspension cultures of Paul’s Scarlet rose. Plant Sci. Lett. 17, 95–99.CrossRefGoogle Scholar
  205. Josten P. & Kutschera U. 1999 The micronutrient boron causes the development of adventitous roots in sunflower cuttings. Ann. Bot. 84, 337–342.CrossRefGoogle Scholar
  206. Kamada H. & Harada H. 1977 Influence of several growth regulators and amino acids on in vitro organogenesis of Torenia and Daucus. Acta Hortic. 78, 175–176.Google Scholar
  207. Kamada H. & Harada H. 1979 Studies on the organogenesis in carrot tissue cultures. II. Effects of amino acids and inorganic nitrogenous compounds on somatic embryogenesis. Z. Pflanzen-physiol. 91, 453–463.Google Scholar
  208. Kamada H. & Harada H. 1982 Studies on nitrogen metabolism during somatic embryogenesis in carrot. pp. 115-116 in Fujiwara A.(ed.) 1982 (q.v.).Google Scholar
  209. Kamo K.K., Becwar M.R. & Hodges T.K. 1985 Regener-ation of Zea mays L. from embryogenic callus. Bot. Gaz. 146, 327–334.CrossRefGoogle Scholar
  210. Kao K.N. & Michayluk M.R. 1975 Nutritional requirements for growth of Vicia hajastana cells and protoplasts at a very low population density in liquid media. Planta 126, 105–110.CrossRefGoogle Scholar
  211. Kasperbauer M.J. & Reinert R.A. 1967 Photometrically assayable phytochrome in vivo in callus tissue cultured from Nicotiana tabacum. Physiol. Plant. 20, 977–981.CrossRefGoogle Scholar
  212. King P.J. 1977 Studies on the growth in culture of plant cells, growth limitiation by nitrate and glucose in a chemostat culture of Acer pseudoplatanus. J. Exp. Bot. 28, 142–155.CrossRefGoogle Scholar
  213. Kintzios S., Drossopoulos J.B. & Lymperopoulos C. 2001 Effect of vitamins and inorganic micronutrients on callus growth and somatic embryogenesis from leaves of chilli pepper. Plant Cell Tissue Organ Cult. 67, 55–62.CrossRefGoogle Scholar
  214. Kintzios S., Stavropopoulou ER. & Skamneli S. 2004 Accumulation of selected macronutrients and carbohydrates in melon tissue cultures: association with pathways of in vitro dedifferentiation and differentiation (organogenesis, somatic embryogenesis). Plant Sci. 167, 655–664.CrossRefGoogle Scholar
  215. Kirby E.G. 1982 The effects of organic nitrogen sources on growth of cell cultures of Douglas fir. Physiol. Plant. 56, 114–117.CrossRefGoogle Scholar
  216. Kirby E.G., Leustek T. & Lee M.S. 1987 Nitrogen nutrition. pp. 67-88 in Bonga and Durzan (eds.) Cell and Tissue Culture in ForestryVol 1. General Principles and Biotech-nology. Martinus Nijhoff Publishers, Dordrecht, Boston, Lancaster. ISBN 90-247-3430-4.Google Scholar
  217. KISS T & Gergely A. 1979 Complexes of 3,4-dihydroxyphenyl derivatives III. Equilibrium study of parent and some mixed ligand complexes of dopamine, alanaine and pyrocatechol with nickel(II), copper(II) and zinc(II) ions. Inorg. Chim. Acta, 36, 31CrossRefGoogle Scholar
  218. Klapheck S., Grosse W. & Bergmann L. 1982 Effect of sulphur deficiency on protein synthesis and amino acid accumulation in cell suspension cultures of Nicotiana tabacum. Z. Pflanzenphysiol. 108, 235–245.Google Scholar
  219. Klein R.M. & Manos G.E. 1960 Use of metal chelates for plant tissue cultures. Ann. New York Acad. Sci. 88, 416–425.CrossRefGoogle Scholar
  220. Klein R.M., Caputo E.M. & Witterholt B.A. 1962 The role of zinc in the growth of plant tissue cultures. Am. J. Bot. 49, 323–327.CrossRefGoogle Scholar
  221. Knight M.R., Campbell A.K., Smith T.M. & Trewavas A.J. 1991 Transgenic plant aequorin reports the effects of touch, cold-shock and elicitors on cytoplasmic calcium. Nature 352, 424–426.CrossRefGoogle Scholar
  222. Knudson L. 1922 Non-symbiotic germination of orchid seeds. Bot. Gaz. 73, 1–25.CrossRefGoogle Scholar
  223. Knudson L. 1943 Nutrient solutions for orchid seed germin-ation. Am. Orchid Soc. Bull. 12, 77–79.Google Scholar
  224. Kochhar T., Bhalla P. & Sabharwal P. 1970 Formation De bourgeons végétatifs par des cals De tabac sous l’influence d’un agent De chélation: l’acide 1,3-diamino-2-hydroxypropane- N,N,N,N,-tetracétique (DNPTA). Compt. Rend. Acad. Sci. Paris 271D, 1619-1622.Google Scholar
  225. Kochhar T.S., Bhalla P.R. & Sabharwal P.S. 1971 Induction of vegetative buds in tobacco callus by chelating agents. Am. J. Bot. 58, 453.Google Scholar
  226. Koetje D.S., Grimes H.D., Wang Y.-C. & Hodges T.K. 1989 Regeneration of indica rice (Oryza sativa L.) from primary callus from immature embryos. J. Plant Physiol. 13, 184–190.Google Scholar
  227. Kolthoff I.M. & Auerbach C. 1952 Studies on the system iron-ethylenediamine tetraacetate. J. Am. Chem. Soc. 74, 1452–1456.CrossRefGoogle Scholar
  228. Krosing M. 1978 Tissue culture under conditions of boron deficiency. Z. Pflanz. Bodenkunde 141, 523–534.CrossRefGoogle Scholar
  229. Lakshmana Rao R.V. & De D.N. 1987 Haploid plants from in vitro anther culture of the leguminous tree, Peltophorum pterocarpum (DC) K. Hayne (Copper pod). Plant Cell Tiss. Organ Culture 11, 167–177.CrossRefGoogle Scholar
  230. Lamotte C.E. & Lersten N.R. 1971 An attempt to induce bacteria-free plants of Psychotria punctata (Rubiaceae) in tissue culture. Am. J. Bot. 58, 476.Google Scholar
  231. Larkin P.J. 1982 Sugarcane tissue and protoplast culture. Plant Cell Tissue Organ Cult. 1, 149–164.CrossRefGoogle Scholar
  232. Lavee S. & Hoffman M. 1971 The effect of potassium ions on peroxidase activity and its isoenzyme composition as related to apple callus growth in vitro. Bot. Gaz. 132, 232–237.CrossRefGoogle Scholar
  233. Lazar M.D. & Collins G.B. 1981 Comparative glutamine metabolism in tobacco callus and leaf tissues. Environ. Exp. Bot. 21, 425.Google Scholar
  234. Lea P.J., Hughes J.S. & Miflin B.J. 1979 Glutamine- and asparagine-dependent protein synthesis in maturing legume cotyledons cultured in vitro. J. Exp. Bot. 30, 529–537.CrossRefGoogle Scholar
  235. Legrand B. 1975 Action of iron and EDTA on the neoformation of buds, by the leaf fragments of endive cultivated in vitro. Compt. Rend. Acad. Sci. Paris 280D, 2215-2218.Google Scholar
  236. Leiffert C., Murphy K.P. & Lumsden P.J. 1995 Mineral and carbohydrate nutrition of plant cell and tissue cultures. Crit. Rev. Plant Sci. 14, 83-109CrossRefGoogle Scholar
  237. Lenee P. & Chupeau Y. 1989 Development of nitrogen assimilating enzymes during growth of cells derived from protoplasts of sunflower and tobacco. Plant Sci. 59, 109–117.CrossRefGoogle Scholar
  238. Lerch K. 1981 Copper monooxygenases: tyrosine and dopamine b-monooxygenase. pp. 143-186 in Sigel H. (ed.) 1981 Metal Ions in Biological Systems 13 Marcel Dekker Inc. New York, Basel.Google Scholar
  239. Lewis D.H. 1980 Boron, lignification and the origin of vascular plants - a unified hypothesis. New Phytol. 84, 209–229.CrossRefGoogle Scholar
  240. Li C., Pfeffer H., Dannel F., Römheld V. & Bangherth F. 2001 Effects of boron starvation on boron compartmentation, and possibly hormone-mediated elongation growth and apical dominance of pea (Pisum sativum) plants. Physiol. Plant. 111, 212–219.CrossRefGoogle Scholar
  241. Linsmaier E.M. & Skoog F. 1965 Organic growth factor requirements of tobacco tissue cultures. Physiol. Plant. 18, 100–127.CrossRefGoogle Scholar
  242. Litvay J.D., Johnson M.A., Verma D., Einspahr D. & Weyrauch K. 1981 Conifer suspension culture medium development using analytical data from developing needs. IPC Technical paper series, no.115.Google Scholar
  243. Lloyd G. & McCown B. 1981 Commercially-feasible micropropagation of Mountain laurel, Kalmia latifolia, by use of shoot tip culture. Int. Plant Prop. Soc. Proc. 30, 421–427.Google Scholar
  244. Lopez-Bucio J., Cruz-Ramirez A. & Herrera-Estrella L. 2003 The role of nutrient availability in regulating root architecture. Curr. Opin. Plant Biol. 6, 280–287.PubMedCrossRefGoogle Scholar
  245. Loreti F., Morini S. & Concetti S. 1988 Effect of potassium and nitrogen concentration on growth of peach shoots cultured in vitro. Acta Hortic. 227, 311–317.Google Scholar
  246. Luciani G.F., Marinangeli P.A. & Curvetto N.R. 2001 Increasing nitrate/ammonium ratio for improvement of garlic micropropagation. Sci. Hortic. 87, 11–20.CrossRefGoogle Scholar
  247. Lumsden P.J., Pryce S. & Leifert C. 1990 Effect of mineral nutrition on the growth and multiplication of in vitro cultured plants. pp. 108-113 in Nijkamp H.I.J., Van Der Plas I.H.W. and Van Aartrijk J. (eds.) Progress in Plant Cellular and Molecular Biology. Proc. VIIth Int. Cong. on Plant Tissue and Cell Culture. Amsterdam, The Netherlands. 24-29 June 1990. Kluwer Academic Publishers, Dortrecht, Netherlands.Google Scholar
  248. Maccarthy J.J., Ratcliffe D. & Street H.E. 1980 The effect of nutrient composition on the growth cycle of Catharanthus roseus G. Don cells grown in batch culture. J. Exp. Bot. 31, 1315–1325.CrossRefGoogle Scholar
  249. Macklon A.E.S. & Sim A. 1976 Cortical cell fluxes and transport to the stele in excised root segments of Allium cepa L. III. Magnesium. Planta 128, 5–9.Google Scholar
  250. Maclachlan G.A. & Waygood E.R. 1956 Catalysis of indoleacetic acid oxidation by manganic ions. Physiol. Plant. 9, 321–330.CrossRefGoogle Scholar
  251. Maheshwari S.C & Chauhan O.S. 1963 In vitro control of flowering in Wolffia microscopica. Nature 198, 99–100.CrossRefGoogle Scholar
  252. Maheshwari S.C. & Seth P.N. 1966 Induction of flowering in Wolffia microscopica by the iron salt of ethylene-di-o-hydroxyphenylacetic acid (Fe-EDDHA). Z. Pflanzenphysiol. 55, 89–91.Google Scholar
  253. Mallosiotis A.N., Dimassi K., Therios I. & Diamantidis G. 2003 Fe-EDDHA promotes rooting of rootstoock GF-677 (Prunus amygdalus x P. persica) explants in vitro. Biol. Plant. 47, 141–144.CrossRefGoogle Scholar
  254. Margara J. & Leydecker M.-T. 1978 Différents types d’organogenése observés chez le Colza, Brassica napus L. var. oleifera Metzg. Compt. Rend. Acad. Sci. Paris 287D, 17-20.Google Scholar
  255. Margara J. & Rancillac M. 1966 Observations préliminaires sur le r?le du milieu nutritif dans l’initiation florale des bourgeons néoformés in vitro chez Cichorium intybus L. Compt. Rend. Acad. Sci. Paris 263D, 1455-1458.Google Scholar
  256. Margara J. 1969a étude des facteurs De la néoformation De bourgeons en culture in vitro chez le chou-fleur (Brassica oleracea L. var. botrytis). Ann. Physiol. Veg. 11, 95–112.Google Scholar
  257. Margara J. 1969b étude préliminaire des facteurs De la néoformations De bourgeons chez le chou-fleur (Brassica oleracea L. var. botrytis). Compt. Rend. Acad. Sci. Paris 268D, 686-688.Google Scholar
  258. Martin R.B. 1979 Complexes of a-amino acids with chelatable side chain donor atoms. pp. 1-39 in Sigel H. (ed.) 1979 Metal Ions in Biological Systems 9 Marcel Dekker Inc., New York and Basel.Google Scholar
  259. Martin S.M., Rose D. & Hui V. 1977 Growth of plant cell suspensions with ammonium as the sole nitrogen source. Can. J. Bot. 55, 2838–2843.Google Scholar
  260. Martinelli A. 1988 Use of in vitro techniques for selection and cloning of different Pistacia species. Acta Hortic. 227, 436–437.Google Scholar
  261. Mashayekhi K. & Neumannn K.H. 2006 Investigations on the influence of boron on somatic embryogenesis of Daucus carota. Plant Cell Tissue Organ Cult. 84, 279–283.CrossRefGoogle Scholar
  262. Mauney J.R., Chappell J. & Ward B.J. 1967 Effects of malic acid salts on growth of young cotton embryos in vitro. Bot. Gaz. 128, 198–200.CrossRefGoogle Scholar
  263. Mauro M.C., Nee C. & Fallot J. 1986 Stimulation of somatic embryogenesis and plant regeneration from anther culture of Vitis vinifera cv. Cabernet-Sauvignon. Plant Cell Rep. 5, 377–380.CrossRefGoogle Scholar
  264. Mazé P. 1919 Recherche De physiologie végétale. Influence respective des éléments De la solution minérale sur la développement De mais. Ann. Inst. Pasteur 28, 21–46.Google Scholar
  265. McClendon J.H. 1976 Elemental abundance as a factor in the origins of mineral nutrient requirements. J. Mol. Evol. 8, 175–195.PubMedCrossRefGoogle Scholar
  266. McCown B.H. & Sellmer J.C. 1987 General media and vessels suitable for woody plant culture. pp. 4-16 in Bonga and Durzan (eds.) 1987 Cell and Tissue Culture in ForestryVol 1. General Principles and Biotechnology. Martinus Nijhoff Publishers, Dordrecht, Boston, Lancaster. ISBN 90-247-3430-4.Google Scholar
  267. Mengel K. & Kirkby E.A. 1982 Principles of Plant Nutrition. 3rd Edition. Internat. Potash Institute, Bern, Switzerland.Google Scholar
  268. Meyer Y. & Abel W.O. 1975a Importance of the cell wall for cell division and in the activity of the cytoplasm in cultured tobacco protoplasts. Planta 123, 33–40.CrossRefGoogle Scholar
  269. Meyer Y. & Abel W.O. 1975b Budding and cleavage division of tobacco mesophyll protoplasts in relation to pseudo-wall and wall formation. Planta 125, 1–13.Google Scholar
  270. Middleton W., Jarvis B.C. & Booth A. 1978 The boron requirement for root development in stem cuttings of Phaseolus aureus Roxb. New Phytol. 81, 287–297.CrossRefGoogle Scholar
  271. Miller C.O. 1954 The influence of cobalt and sugar upon the elongation of etiolated pea stem segments. Plant Physiol. 29, 79–82.PubMedGoogle Scholar
  272. Miller C.O. 1961 A kinetin-like compound in maize. Proc. Natl. Acad. Sci. USA 47, 170–174.PubMedCrossRefGoogle Scholar
  273. Miller C.O. 1963 Kinetin and kinetin-like compounds. pp. 194-202 in Linskens & Tracey (eds.). Modern Methods of Plant Analysis. Vol. 6. Springer-Verlag, Berlin.Google Scholar
  274. Miller L.R. & Murashige T. 1976 Tissue culture propagation of tropical foliage plants. In Vitro 12, 797–813.PubMedGoogle Scholar
  275. Millerd A., Spencer D., Dudman W.F. & Stiller M. 1975 Growth of immature pea cotyledons in culture. Aust. J. Plant Physiol. 2, 51–59.CrossRefGoogle Scholar
  276. Mishra D. & Kar M. 1975 Nickel in plant growth and metabolism. Bot. Rev. 40, 395–452.Google Scholar
  277. Mitra G.C., Prasad R.N. & Roychowdhury A. 1976 Inorganic salts and differentiation of protocorms in seed-callus of an orchid and correlated changes in its free amino acid content. Ind. J. Exp. Biol. 14, 350–351.Google Scholar
  278. Mitsukawa N, Okumura S, Shirano Y, Sato S, Kato T, Harashima S & Shibata D 1997 Overexpression of an Arabidopsis thaliana high-affinity phosphate transporter gene in tobacco cultured cells enhances cell growth under phosphate-limited conditions. Proc. Natl Acad. Sci. USA 94, 7098–7102.PubMedCrossRefGoogle Scholar
  279. Mohanty B. & Fletcher J.S. 1978 Influence of ammonium on the growth and development of suspension cultures of Paul’s Scarlet rose. Physiol. Plant. 42, 221–225.CrossRefGoogle Scholar
  280. Mohanty B. & Fletcher J.S. 1980 Ammonium influence on nitrogen assimilating enzymes and protein accumulation in suspension cultures of Paul’s Scarlet rose. Physiol. Plant. 48, 453–459.CrossRefGoogle Scholar
  281. Moller I.M. & Palmer J.M. 1981 The inhibition of exogenous NAD(P)H oxidation in plant mitochondria by chelators and mersalyl as a function of pH. Physiol. Plant. 53, 413–420.CrossRefGoogle Scholar
  282. Molnar S.J. 1988a High frequency of stable 5-methyl-DL-tryptophan resistance in Brassica nigra cell suspension cultures. Plant Cell Tissue Organ Cult. 15, 245–256.CrossRefGoogle Scholar
  283. Molnar S.J. 1988b Nutrient modifications for improved growth of Brassica nigra cell suspension cultures. Plant Cell Tissue Organ Cult. 15, 257–267.CrossRefGoogle Scholar
  284. Monnier M. 1976 Culture in vitro De l’embryon immature De Capsella bursa-pastoris Moench. (L.). Rev. Cytol. Biol. Vég. 39, 1–120.Google Scholar
  285. Monteuuis O., Bon M.C. & Berthon J.Y. 1987 Micro-propagation aspects of Sequoiadendron giganteum juvenile and mature clones. Acta Hortic. 212, 489–497.Google Scholar
  286. Moore H.M. & Hirsch A.M. 1981 DNA synthesis and mitosis in boron-deficient and control sunflower root tips. Plant Physiol. 67, Suppl., 12.Google Scholar
  287. Moriguchi T. & Yamaki S. 1989 Prolonged storage of grape nodal culture using a low concentration of ammonium nitrate. HortScience 24, 372–373.Google Scholar
  288. Mott R.L., Cordts J.M. & Larson A.M. 1985 Nitrogen and growth regulator effects on shoot and root growth of soybean in vitro. pp. 336-337 in Henke R.R., Hughes, K.W., Constantin M.J., Hollaender A.A. and Wilson C.M. (eds.) Tissue Culture in Forestry and Agriculture. Plenum Press, New York, London.Google Scholar
  289. Moyer B.G. & Gustine D.L. 1984 Regeneration of Coronilla varia L. (Crownvetch) plants from callus culture. Plant Cell Tissue Organ Cult. 3, 143–148.CrossRefGoogle Scholar
  290. Muller A.J. & Grafe R. 1978 Isolation and characterization of cell lines of Nicotiana tabacum lacking nitrate reductase. Mol. Gen. Genet. 161, 67–76.CrossRefGoogle Scholar
  291. Muller A.J. & Mendel R.R. 1982 Nitrate reductase-deficient tobacco mutants and the regulation of nitrate assimilation. pp. 233-234 in Fujiwara A. (ed.) 1982 (q.v.).Google Scholar
  292. Mullins K.V. 1987 Micropropagation of chestnut (Castanea sativaMill.). Acta Hortic. 212, 525–530.Google Scholar
  293. Muralidhar C.E. & Mehta A.R. 1982 Clonal propagation of three ornamental plants through tissue culture methods. pp. 693-694 in A. (ed.) 1982 (q.v.).Google Scholar
  294. Murashige T. & Skoog F. 1962 A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Physiol. Plant. 15, 473–497.CrossRefGoogle Scholar
  295. Murashige T. 1974 Plant propagation through tissue cultures. Annu. Rev. Plant Physiol. 25, 135–166.CrossRefGoogle Scholar
  296. Murashige T., Shabde M.N., Hasegawa P.M., Takatori F.H. & Jones J.B. 1972 Propagation of asparagus through shoot apex culture. I. Nutrient media for formation of plantlets. J. Am. Soc. Hortic. Sci. 97, 158–161.Google Scholar
  297. Nagmani R. & Bonga J.M. 1985 Embryogenesis in sub-cultured callus of Larix decidua. Can. J. For. Res. 15, 1088–1091.Google Scholar
  298. Nas M.N. & Read P.E. 2004 A hypothesis for the development of a defined medium of higher plants and micropropagation of hazelnuts. Sci. Hortic. 101, 189–200.CrossRefGoogle Scholar
  299. Nato A., Lavergne D., Flipo V. & Hoarau J. 1990 Are two localization sites of nitrate reductase responsible for the differential expression in tobacco cells during the growth cycle? pp. 349-354 in Nijkamp H.I.J., Van Der Plas I.H.W. and Van Aartrijk J. (eds.) Progress in Plant Cellular and Molecular Biology. Proc. VIIth Int. Cong. on Plant Tissue and Cell Culture. Amsterdam, The Netherlands. 24-29 June 1990. Kluwer Academic Publishers, Dortrecht, Netherlands.Google Scholar
  300. Neales T.F. 1959 The boron requirement of flax roots grown in sterile culture. J. Exp. Bot. 10, 426–436.CrossRefGoogle Scholar
  301. Neales T.F. 1964 A comparison of the boron requirements of intact tomato plants and excised tomato roots grown in sterile culture. J. Exp. Bot. 15, 647–653.CrossRefGoogle Scholar
  302. Nickell L.G. & Maretzki A. 1969 Growth of suspension cultures of sugarcane cells in chemically defined media. Physiol. Plant. 22, 117–125.CrossRefGoogle Scholar
  303. Nirwan R.S. & Kothari S.L. 2003 High copper levels improve callus induction and plant regeneration in Sorghum bicolor (L.) Moench. In Vitro Cell. Dev. Biol. Plant 39, 161–164.CrossRefGoogle Scholar
  304. Nitsch J.P. & Nitsch C. 1956 Auxin-dependent growth of excised Helianthus tissues. Am. J. Bot. 43, 839–851.CrossRefGoogle Scholar
  305. Nitsch J.P. 1969 Experimental androgenesis in Nicotiana. Phytomorph. 19, 389–404.Google Scholar
  306. NOBéCourt P. 1937 Culture en serie des tissus végétaux sur milieux artificial. Compt. Rend. Acad. Sci. Paris 205, 521–523.Google Scholar
  307. Norstog K. 1967 Studies on the survival of very small barley embryos in culture. Bull. Torrey Bot. Club 94, 223–229.CrossRefGoogle Scholar
  308. Norstog K. 1973 New synthetic medium for the culture of premature barley embryos. In Vitro 8, 307–308.PubMedCrossRefGoogle Scholar
  309. Nuti Ronchi V., Caligo M.A., Nozzolini M. & Luccarini G. 1984 Stimulation of carrot somatic embryogenesis by proline and serine. Plant Cell Rep. 3, 210–214.CrossRefGoogle Scholar
  310. Ochatt S.J. & Caso O.H. 1986 Shoot regeneration from leaf mesophyll protoplasts of wild pear (Pyrus communis var. pyraster L.). J. Plant Physiol. 122, 243–249.Google Scholar
  311. Ochatt S.J. & Power J.B. 1988a Rhizogenesis in callus from conference pear (Pyrus communis L.) protoplasts. Plant Cell Tissue Organ Cult. 13, 159–164.CrossRefGoogle Scholar
  312. Ochatt S.J. & Power J.B. 1988b Plant regeneration from mesophyll protoplasts of Williams’ Bon Chretien (syn. Bartlett) pear (Pyrus communis L.). Plant Cell Rep. 7, 587–589.CrossRefGoogle Scholar
  313. Odhnoff C. 1957 Boron deficiency and growth. Physiol. Plant. 10, 984–1000.CrossRefGoogle Scholar
  314. Oertli J.J. & Grgurevic E. 1974 Effect of pH on the absorption of boron by excised embryos. Agron. J. 67, 278–280.CrossRefGoogle Scholar
  315. Ohyama K. & Nitsch J.P 1972 Flowering haploid plants obtained from protoplasts of tobacco leaves. Plant Cell Physiol. 13, 229- 236.Google Scholar
  316. Orczyk W. & Malepszy S. 1985 In vitro culture of Cucumis sativus L. V. Stabilizing effect of glycine on leaf protoplasts. Plant Cell Rep. 4, 269-273CrossRefGoogle Scholar
  317. Osifo F.O. 1988 Somatic embryogenesis in Dioscorea. J. Plant Physiol. 133, 378–380..Google Scholar
  318. Ozanne P.G. 1958 Chlorine deficiency in soils. Nature 182, 1172–1173.CrossRefGoogle Scholar
  319. Ozanne P.G., Woolley J.T. & Broyer T.C. 1957 Chlorine and bromine in the nutrition of higher plants. Austr. J. Biol. Sci. 10, 66–79.Google Scholar
  320. Ozias-Akins P. & Vasil I.K. 1982 Plant regeneration from cultured immature embryos and inflorescences of Triticum aestivum L. (wheat): evidence for somatic embryogenesis. Protoplasma 110, 95–105.Google Scholar
  321. Pais M.S.S. & Casal M. 1987 Propagation of the fern Adiantum copillas-veneris through tissue culture of the circinate part of young leaves. Acta Hortic. 212, 651–654.Google Scholar
  322. Pasqualetto P.-L., Zimmerman R.H. & Fordham I. 1988 The influence of cation and gelling agent concentrations on vitrification of apple cultivars in vitro. Plant Cell Tissue Organ Cult. 14, 31-40CrossRefGoogle Scholar
  323. PéRinet P., ValléE G. & Tremblay E.M. 1988 In vitro propagation of mature trees of Alnus incana (L.) Moench. Plant Cell Tiss. Organ Culture, 15, 85–89.CrossRefGoogle Scholar
  324. Pevalek-Kozlina B. & Jelaska S. 1987 Microclonal propagation of Prunus avium L. Acta Hortic. 212, 599–602.Google Scholar
  325. Phillips G.C. & Collins G.B. 1979 In vitro tissue culture of selected legumes and plant regeneration from callus cultures of red clover. Crop Sci. 19, 59–64.CrossRefGoogle Scholar
  326. Phillips G.C. & Collins G.B. 1980 Somatic embryogenesis from cell suspension cultures of red clover. Crop Sci. 20, 323-326.CrossRefGoogle Scholar
  327. Piagnani C. & Eccher T. 1988 Factors affecting the proliferation and rooting of chestnut in vitro. Acta Hortic. 227, 384–386.Google Scholar
  328. Pierik R.L.M. 1988 In vitro culture of higher plants as a tool in the propagation of horticultural crops. Acta Hortic. 226, 25–40.Google Scholar
  329. Pierik R.L.M., Sprenkels P.A., Van Der Harst R. & Van Der Mays Q.G. 1988 Seed germination and further development of plantlets of Paphiopedilum ciliolare Pfitz. in vitro. Scientia Hort. 34, 139–153.CrossRefGoogle Scholar
  330. Poirier-Hamon S., Rao P.S. & Harada H. 1974 Culture of mesophyll protoplasts and stem segments of Antirrhinum majus (snapdragon): growth and organization of embryoids. J. Exp. Bot. 25, 752–760.CrossRefGoogle Scholar
  331. Polacco J.C. 1977a Is nickel a universal component of plant ureases? Plant Sci. Lett. 10, 249–255.CrossRefGoogle Scholar
  332. Polacco J.C. 1977b Nitrogen metabolism in soybean tissue culture. II. Urea utilisation and urease synthesis require Ni2 +. Plant Physiol. 59, 827–830.Google Scholar
  333. Pollard A.S., Parr A.J. & Loughman C.L. 1977 Boron in relation to membrane function in higher plants. J. Exp. Bot. 28, 831–841.CrossRefGoogle Scholar
  334. Poovaiah B.W. 1988 Molecular and cellular aspects of calcium action in plants. HortScience 23, 267–271.PubMedGoogle Scholar
  335. Price H.J. & Smith R.H. 1979a Somatic embryogenesis in sus-pension cultures of Gossypium klotzschianum Anderss. Planta 145, 305–307.CrossRefGoogle Scholar
  336. Price H.J. & Smith R.H. 1979b Somatic embryogenesis in Gossypium. In Vitro 15, 177 (Abst. 45).CrossRefGoogle Scholar
  337. Price A.H., Taylor A., Ripley S.J., Griffith A., Trewavas A.J. & Knight M.R. 1994 Oxidative signals in tobacco increase cytosolic calcium. Plant Cell 6, 1301–1310.PubMedCrossRefGoogle Scholar
  338. Pullman G.S., Montello P., Cairney J., Xu N. & Feng X. 2003 Loblolly pone (Pinus taeda L.) somatic embryogenesis: maturation improvements by metal analyses of zygotic and somatic embryos. Plant Sci. 164, 955–969.CrossRefGoogle Scholar
  339. Quoirin M. & Lepoivre P. 1977 Improved media for in vitro culture of Prunus sp. Acta Hortic. 78, 437–442.Google Scholar
  340. Radojevic L. 1988 Plant regeneration of Aesculus hippocast-anumL. (Horse Chestnut) through somatic embryogenesis. J. Plant Physiol. 132, 322–326.Google Scholar
  341. Rains D.W. 1976 Mineral metabolism. pp. 561-597 in Bonner J. and Varner J.L. (eds.) 1976 Plant Biochemistry. Academic Press, New York.Google Scholar
  342. Ramage C.M. & Williams R.R. 2002 Inorganic nitrogen requirements during shoot organogenesis in tobacco leaf discs. J. Exp. Bot. 53, 1437–1443.PubMedCrossRefGoogle Scholar
  343. Ramage C.M. & Williams R.R. 2002 Mineral nutrition and plant morphogenesis. In Vitro Cell. Dev. Biol. Plant 38, 116–124.CrossRefGoogle Scholar
  344. Ranch J. & Widholm J. 1980 Studies on the use of toxic metabolic analogs for the isolation of nutritional variants from plant cell cultures. Plant Physiol. 65, Suppl., 37.Google Scholar
  345. Ranga Swamy N.S. 1958 Culture of nucellar tissue of Citrus in vitro. Experientia 14, 111–112.CrossRefGoogle Scholar
  346. Rashid A. & Street H.E. 1973 The development of haploid embryoids from anther cultures of Atropa belladonna L. Planta 113, 263–270.CrossRefGoogle Scholar
  347. Raven J.A. 1986 Biochemical disposal of excess H+ in growing plants? New Phytol. 104, 175–206.CrossRefGoogle Scholar
  348. Reilley C.N. & Schmid R.W. 1958 Chelometric titrations with potentiometric end point detection. Anal. Chem. 30, 947–953.CrossRefGoogle Scholar
  349. Reinert J. & White P.R. 1956 The cultivation in vitro of tumor tissues and normal tissues of Picea glauca. Physiol. Plant. 9, 177–189.CrossRefGoogle Scholar
  350. Reinert J., Tazawa M. & Semenoff S. 1967 Nitrogen compounds as factors of embryogenesis in vitro. Nature 216, 1215–1216.PubMedCrossRefGoogle Scholar
  351. Reuveny Z., Dougall D.K. & Trinity P.M. 1980 Regula-tory coupling of nitrate and sulfate assimilation pathways in cultured tobacco cells. Proc. Natl. Acad. Sci. USA 77, 6670–6672.PubMedCrossRefGoogle Scholar
  352. Righetti B., Magnanini E. & Maccaferri M. 1988 Ethylene and other volatile substances produced by in vitro-cultured Prunus avium. Acta Hortic. 227, 402–404.Google Scholar
  353. Risser P.G. & White P.R. 1964 Nutritional requirements of Spruce tumour cells in vitro. Physiol. Plant. 17, 620–635.CrossRefGoogle Scholar
  354. Roest S. & Bokelmann G.S. 1975 Vegetative propagation of Chrysanthemum morifolium Ram. in vitro. Sci. Hortic. 3, 317–330.CrossRefGoogle Scholar
  355. Romheld V. & Marschner H. 1986 Evidence for a specific uptake system for iron phytosiderophores in roots of grasses. Plant Physiol. 80, 175–180.PubMedGoogle Scholar
  356. Rugini E. & Verma D.C. 1982 Micropropagation and cell suspensions of a difficult to propagate almond (Prunus amygdalus Batch) cultivar. pp. 741-742 in Fujiwara A. (ed.) 1982 (q.v.).Google Scholar
  357. Rugini E. 1984 In vitro propagation of some olive (Olea europea sativa L.) cultivars with different rootability, and medium development using analytical data from developing shoots and embryos. Sci. Hortic. 24, 123–124.CrossRefGoogle Scholar
  358. Russell J.A. & McCown B.H. 1988 Recovery of plants from leaf protoplasts of hybrid-poplar and aspen clones. Plant Cell Rep. 7, 59–62.CrossRefGoogle Scholar
  359. Salisbury F.B. 1959 Growth regulators and flowering. II. The cobaltous ion. Plant Physiol. 34, 598–604.Google Scholar
  360. Sanders D., Brownlee C. & Harper J.F. 1999 Communicating with calcium. Plant Cell 11, 691–706.PubMedCrossRefGoogle Scholar
  361. Sandstedt R. & Skoog F. 1960 Effects of amino acid components of yeast extract on the growth of tobacco tissue in vitro. Physiol. Plant. 13, 250–256.CrossRefGoogle Scholar
  362. Sangwan R.S. & Norreel B. 1975 Induction of plants from pollen grains of Petunia cultured in vitro. Nature 257, 222–224.CrossRefGoogle Scholar
  363. Sargent P.A. & King J. 1974 Investigations of growth-promoting factors in conditioned soybean root cells and in the liquid medium in which they grow: cytokinin-like compounds. Can. J. Bot. 52, 2459–2463.Google Scholar
  364. Sarkar D., Pandey S.K., Sud K.C. & Chanemoug-Asoundharam A. 2004 In vitro characterization of manga-nese toxicity in relation to phosphorus nutrition in potato (Solanum tuberosum L.). Plant Sci. 167, 977–986.CrossRefGoogle Scholar
  365. Saunders J.W. & Bingham E.T. 1972 Production of alfalfa plants from callus tissue. Crop Sci. 12, 804–808.CrossRefGoogle Scholar
  366. Saunders M.J. & Hepler P.K. 1981 Localization of membrane-associated calcium following cytokinin treatment in Funaria using chlorotetracycline. Planta 152, 272–281.CrossRefGoogle Scholar
  367. Schachtman D.P., Reid R.J. & Ayling S.M. 1998 Phos-phorus uptake by plants: From soil to cell. Plant Physiol. 116, 447-453PubMedCrossRefGoogle Scholar
  368. Schenk R.U. & Hildebrandt A.C. 1972 Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Can. J. Bot. 50, 199–204.Google Scholar
  369. Scherer P.A., Muller E., Lippert H. & Wolff G. 1988 Multielement analysis of agar and Gelrite impurities investigated by inductively coupled plasma emission spectrometry as well as physical properties of tissue culture media prepared with agar or gellan gum gelrite. Acta Hortic. 226, 655–658.Google Scholar
  370. Scholten H.J. & Pierik R.L.M. 1998 Agar as a gelling agent: Chemical and physical analysis. Plant Cell Rep. 17, 230–235.CrossRefGoogle Scholar
  371. Schulze D. 1988 Saintpaulia ionantha H. Wendl. – In vitro propagation and acclimatization in a commercial laboratory. Acta Hortic. 226, 619–622.Google Scholar
  372. Schwambach J., Fadanelli C. & Fett-Neto A.G. 2005 Mineral nutrition and adventitious rooting in microcuttings of Eucalyptus globulus. Tree Physiol. 25, 487–494.PubMedGoogle Scholar
  373. Scowcroft W.R. & Adamson J.A. 1976 Organogenesis from callus cultures of the legume Stylosanthes hamata. Plant Sci. Lett. 7, 39–42.CrossRefGoogle Scholar
  374. Sha L., McCown B.H. & Peterson L.A. 1985 Occurrence and cause of shoot-tip necrosis in shoot cultures. J. Am. Soc. Hortic. Sci. 110, 631–634.Google Scholar
  375. Shacklock P.S., Read N.D. & Trewavas A.J. 1992 Cytosolic free calcium mediates red-light induced photomorpho-genesis. Nature 358, 753–755.CrossRefGoogle Scholar
  376. Sharma C.P. & Singh S. 1990 Sodium helps overcome potass-ium deficiency effects on water relations of cauliflower. HortScience 25, 458–459.Google Scholar
  377. Shekhawat N.S. & Galston A.W. 1983 Mesophyll proto-plasts of fenugreek (Trigonella foenumgraecum): Isolation, culture and shoot regeneration. Plant Cell Rep. 2, 119–121.CrossRefGoogle Scholar
  378. Shelton B.B., Evans G.F. & Boss W.F. 1981 During embryogenesis, do cells exhibit polarity prior to morphological differentiation? Environ. Exp. Bot. 21, 426.Google Scholar
  379. Shkolnik M. YA. 1984 Trace Elements in Plants. Develop-ments in Crop Science 6. Elsevier Amsterdam, Oxford, New York, Tokyo.Google Scholar
  380. Short K.C. & Torrey J.G. 1972 Cytokinin production in relation to the growth of pea-root callus tissue. J. Exp. Bot. 23, 1099–1105.CrossRefGoogle Scholar
  381. Singh J.P. 1978 Effect of nitrogen sources on shoot bud differentiation of Dioscorea deltoidea Wall. callus culture. Biol. Plant. 20, 436–439.Google Scholar
  382. Singh M. & Krikorian A.D. 1980 Chelated iron in culture media. Ann. Bot. 46, 807–809.Google Scholar
  383. Singha S., Oberley G.H. & Townsend E.C. 1987 Changes in nutrient composition and pH of the culture medium during in vitro shoot proliferation of crab apple and pear. Plant Cell Tissue Organ Cult. 11, 209–220.CrossRefGoogle Scholar
  384. Singha S., Townsend E.C. & Oberly, G.H. 1990 Relationship between calcium and agar on vitrification and shoot-tip necrosis of quince (Cydonia oblonga Mill.) shoots in vitro. Plant Cell Tissue Organ Cult. 23, 135–142.CrossRefGoogle Scholar
  385. Skokut T.A. & Filner P. 1980 Slow adaptive changes in urease levels of tobacco cells cultured on urea and other nitrogen sources. Plant Physiol. 65, 995–1003.PubMedGoogle Scholar
  386. Skoog F. 1944 Growth and organ formation in tobacco tissue cultures. Am. J. Bot. 31, 19–24.CrossRefGoogle Scholar
  387. Smith D.L. 1968 The growth of shoot apices and inflorescences of Carex flacca Schreb. in aseptic culture. Ann. Bot. 32, 361–370.Google Scholar
  388. Smith R.H. 1981 Phytohormone and primordial leaf effects on Coleus blumei apical domes. Plant Physiol. 67, Suppl., 118.Google Scholar
  389. Sommer A.L. & Lipman C.B. 1926 Evidence on the indis-pensable nature of zinc and boron for higher green plants. Plant Physiol. 1, 231–249.PubMedGoogle Scholar
  390. Sommer A.L. 1931 Copper as an essential for plant growth. Plant Physiol. 6, 339–345.PubMedGoogle Scholar
  391. Sondahl M.R. & Sharp W.R. 1977 High frequency induction of somatic embryos in cultured leaf explants of Coffea arabica L. Z. Planzenphysiol. 81, 395–408.Google Scholar
  392. Steward J.McD. & Hsu C.L. 1977 In ovulo embryo culture and seedling development of cotton (Gossypium hirsutum L.). Planta 137, 113–117.CrossRefGoogle Scholar
  393. Street H.E. 1966 The nutrition and metabolism of plant tissue and organ cultures. pp. 533-629 in Willmer E.N. Cells and Tissues in Culture – Methods and Physiology.Vol 3. Academic Press, London, New York.Google Scholar
  394. Street H.E. 1977 Laboratory organization. pp. 11-30 in Street H.E. (ed.) Plant Tissue and Cell Culture.Bot. Monographs Vol.11, Blackwell Scientific Public-ations. Oxford, London.Google Scholar
  395. Street H.E. 1979 Embryogenesis and chemically induced organogenesis. pp. 123-153 in Sharp W.R., Larsen P.O., Paddock E.F. and Raghavan V. (eds.) Plant Cell and Tissue Culture. Ohio State Univ. Press, ColumbusGoogle Scholar
  396. Street H.E., McGonagle M.P. & McGregor S.M. 1952 Observations on the ‘staling’ of White’s medium by excised tomato roots. II. Iron availability. Physiol. Plant. 5, 248–276.Google Scholar
  397. Street H.E. & McGregor S.M. 1952 The carbohydrate nutri-tion of tomato roots. III. The effects of external sucrose concen-tration on the growth and anatomy of excised roots. Ann. Bot. 16, 185–205.Google Scholar
  398. Subbarao G.V., Ito O., Berry W.L. & Wheeler R.M. 2003 Sodium – a functional plant nutrient. Crit. Rev. Plant Sci. 22, 391-416Google Scholar
  399. Suezawa K., Matsuta N., Omura M. & Yamaki S. 1988 Plantlet formation from cell suspensions of kiwi fruit (Actinidia chinensis Planch. var. hispida). Sci. Hortic. 37, 123–128.CrossRefGoogle Scholar
  400. Sugiura A., Tao R., Murayama H. & Tomana T. 1986 In vitro propagation of Japanese persimmon. HortScience 21, 1205–1207.Google Scholar
  401. Sundqvist C., Bjorn L.O. & Virgin H.I. 1980 pp. 201-224 in Reinert J. (ed.) 1980 Results and Problems in Cell Differen-tiation: 10. Chloroplasts. Springer-Verlag Berlin, Heidelberg, New York.Google Scholar
  402. Suzuki A. & Nato A. 1982 Glutamate synthase isoforms in tobacco cultured cells. Immunological studies. pp. 239-240 in Fujiwara A. (ed.) 1982 (q.v.).Google Scholar
  403. Taira T., Haskins F.A. & Gorz H.J. 1977 Callus and suspension cultures of Melilotus alba tissues and cells. Crop Sci. 17, 407–411.CrossRefGoogle Scholar
  404. Tamas I.A. 1987 Hormonal regulation of apical dominance. In: Davies, P.J. (ed.) Plant hormones and their role in plant growth and development. Martinus Nijhoff, Dordrecht. pp. 393-410.Google Scholar
  405. Tanada T. 1978 Boron - key element in the actions of phytochrome and gravity? Planta 143, 109–111.CrossRefGoogle Scholar
  406. Tanimoto S. & Harada H. 1979 Influence of environmental and physiological conditions on floral bud formation of Torenia stem segments cultured in vitro. Z. Pflanzenphysiol. 95, 33–41.Google Scholar
  407. Tanimoto S. & Harada H. 1981 Chemical factors controlling floral bud formation of Torenia stem segments cultured in vitro. I. Effects of mineral nutrients and sugars. Plant Cell Physiol. 22, 533–541.Google Scholar
  408. Tanimoto S. & Harada H. 1982 Studies on floral initiation and development in Torenia stem segments cultured in vitro. pp. 155-156 in Fujiwara A. (ed.) 1982 (q.v.).Google Scholar
  409. Tanimoto S. & Harada H. 1986 Involvement of calcium in adventitious bud initiation in Torenia stem segments. Plant Cell Physiol. 27, 1–10.Google Scholar
  410. Tanner W. & Beevers H. 2001 Transpiration, a prerequisite for long-distance transport of minerals in plants? Proc. Natl. Acad. Sci. USA 98, 9443–9447.CrossRefGoogle Scholar
  411. Taubck K. 1942 Über die Lebensnotwendigkeit des Aluminiums fur Pteridophyten. Bot. Arch. 43, 291–295.Google Scholar
  412. Taylor R.M. 1972 Germination of cotton (Gossypium hirsutum L.) pollen on an artificial medium. Crop Sci. 12, 243–244.CrossRefGoogle Scholar
  413. Taylor A.R., Manison N.F.H., Fernandez C., Wood J. & Brownlee C. 1996 Spatial organization of calcium signalling involved in cell volume control in the Fucus rhizoid. Plant Cell 8, 2115–2031.Google Scholar
  414. Teasdale R.D. 1987 Micronutrients. pp. 17-49 in Bonga and Durzan (eds.) 1987 Cell and Tissue Culture in ForestryVol 1. General Principles and Biotechnology. Martinus Nijhoff Publishers, Dordrecht, Boston, Lancaster. ISBN 90-247-3430-4.Google Scholar
  415. Teasdale R.D., Dawson P.A. & Woolhouse H.W. 1986 Mineral nutrient requirements of a loblolly pine (Pinus taeda) cell suspension culture. Plant Physiol. 82, 942–945.PubMedCrossRefGoogle Scholar
  416. Terry N. 1977 Photosynthesis, growth and the role of chloride. Plant Physiol. 60, 69–75.PubMedGoogle Scholar
  417. Thimann K.V. & Takahashi N. 1958 The action of chelating agents on growth of Avena. Plant Physiol. 33, Suppl., 33.Google Scholar
  418. Thom M., Maretzki A., Komor E. & Sakai W.S. 1981 Nutrient uptake and accumulation by sugarcane cell cultures in relation to the growth cycle. Plant Cell Tissue Organ Cult. 1, 3–14.CrossRefGoogle Scholar
  419. Thompson J.F., Madison J.T. & Muenster A.-M.E. 1977 In vitro culture of immature cotyledons of soya bean (Glycine max L.). Ann. Bot. 41, 29–39.Google Scholar
  420. Thorpe T.A. & Murashige T. 1968 Some histochemical changes underlying shoot initiation in tobacco callus culture. Am. J. Bot. 55, 710.Google Scholar
  421. Thorpe T.A. & Murashige T. 1970 Some histochemical changes underlying shoot initiation in tobacco callus cultures. Can. J. Bot. 48, 277–285.Google Scholar
  422. Tiffin L.O., Brown J.C. & Krauss R.W. 1960 Differential absorption of metal chelate components by plant roots. Plant Physiol. 35, 362–367.PubMedGoogle Scholar
  423. Tiffin L.O. & Brown J.C. 1961 Selective absorption of iron from iron chelates by soybean plants. Plant Physiol. 36, 710–714.PubMedCrossRefGoogle Scholar
  424. Timmers A.C.J., Reiss H.D., Bohsung J., Traxel K. & Schel J.H.N. 1996 Localization of calcium during somatic embryogenesis of carrot (Daucus carota L.). Protoplasma 190, 107–118.CrossRefGoogle Scholar
  425. Torrey J.G. & Reinert J. 1961 Suspension cultures of higher plant cells in synthetic media. Plant Physiol. 36, 483–491.PubMedCrossRefGoogle Scholar
  426. Touraine B., Grignon N. & Grignon C. 1988 Charge balance in NO3 --fed soybean. Estimation of K+ and carboxylate recirculation. Plant Physiol. 88, 605–612.Google Scholar
  427. Trolinder N.L. & Goodin J.R. 1988 Somatic embryogenesis in cotton (Gossypium). II. Requirements for embryo development and plant regeneration. Plant Cell Tissue Organ Cult. 12, 43–53.Google Scholar
  428. Tsui C. 1948 The role of zinc in auxin synthesis in the tomato plant. Am. J. Bot. 35, 172–178.CrossRefPubMedGoogle Scholar
  429. Ukaji T. & Ashihara H. 1987 Effect of inorganic phosphate on the levels of amino-acids in suspension-cultured cells of Catharanthus roseus. Ann. Bot. 60, 109–114.Google Scholar
  430. Umbeck P.F. & Norstog K. 1979 Effects of abscisic acid and ammonium ion on morphogenesis of cultured barley embryos. Bull. Torrey Bot. Club 106, 110–116.CrossRefGoogle Scholar
  431. Vacin E.F. & Went F.W. 1949 Some pH changes in nutrient solutions. Bot. Gaz. 110, 605–613.CrossRefGoogle Scholar
  432. Valles M. & Boxus PH. 1987 Micropropagation of several Rosa hybrida L. cultivars. Acta Hortic. 212, 611–617.Google Scholar
  433. Van Der Salm T.P.M., Van Der Toorn C.J.G., Hänish Ten Cate C.H., Dubois L.A.M., De Vries D.P. & Dons H.J.M. 1994 Importance of the iron chelate formula for micropropagation of Rosa hybrida L. ‘Moneyway’. Plant Cell Tissue Organ Cult. 37, 73–77.CrossRefGoogle Scholar
  434. Van Winkle S.C., Johnson S., Pullman G.S. 2003 The impact of gelrite and activated carbon on the elemental composition of two conifer embryogenic tissue initiation media. Plant Cell Rep. 21, 1175 - 1182Google Scholar
  435. Verma D.C., Litvay J.D., Johnson M.A. & Einsphar D.W. 1982 Media development for cell suspensions of conifers. pp. 59-60 in Fujiwara A. (ed.) 1982 (q.v.).Google Scholar
  436. Walker K.A. & Sato S.J. 1981 Morphogenesis in callus tissue of Medicago sativa: the role of ammonium ion in somatic embryogenesis. Plant Cell Tissue Organ Cult. 1, 109–121.CrossRefGoogle Scholar
  437. Wang Z., Zeng X., Chen C., Wu H., Li Q., Fan G. & Lu W. 1980 Induction of rubber plantlets from anther of Hevea brasiliensis Muell. Arg. in vitro. Chinese J. Trop. Crops 1, 16–26.Google Scholar
  438. Wang Z., Zeng X., Chen C., Wu H., Li Q., Fan G. & Lu W. 1981 Induction of plantlets from anthers of Hevea in vitro. Int. Rubber Res. Dev. Board Synposium, Haadyai 1981Google Scholar
  439. Webb D. & Rivera M.E. 1981 Effects of NAA, BAP and textscL-glutamine on callus formation and organogenesis of Zamia latifoliolataembryos. Env. Exp. Bot. 21, 433-434 (Abst.).Google Scholar
  440. Weinstein L.H., Meiss A.N., Uhler R.L. & Purvis E.R. 1956 Growth- promoting effects of ethylene-diamine tetra-acetic acid. Nature 178, 1188.CrossRefGoogle Scholar
  441. Weinstein L.H., Robbins W.R. & Perkins H.F. 1951 Chelating agents and plant nutrition. Science 120, 41–43.CrossRefGoogle Scholar
  442. Weiser C.J. & Blaney L.T. 1960 The effects of boron on the rooting of English Holly cuttings. Proc. Am. Soc. Hortic. Sci. 75, 704–710.Google Scholar
  443. Weiser C.J. 1959 Effect of boron on the rooting of clematis cuttings. Nature 183, 559–560.CrossRefGoogle Scholar
  444. Welander T. 1977 In vitro organogensis in explants from different cultivars of Begonia hiemalis. Physiol. Plant. 41, 142–145.CrossRefGoogle Scholar
  445. Welander T. 1987 In vitro culture of raspberry (Rubus idaeus) for mass propagation and virus elimination. Acta Hortic. 212, 610.Google Scholar
  446. Wetherell D.F. & Dougall D.K. 1976 Sources of nitrogen supporting growth and embryogenesis in cultured wild carrot tissue. Physiol. Plant. 37, 97–103.CrossRefGoogle Scholar
  447. White M.C., Decker A.M. & Chaney R.L. 1981 Metal complexation in xylem fluid. I. Chemical composition of tomato and soybean stem exudate. Plant Physiol. 67, 292–300.Google Scholar
  448. White P.R. 1937 Separation from yeast of materials essential for growth of excised tomato roots. Plant Physiol. 12, 777–791.PubMedCrossRefGoogle Scholar
  449. White P.R. 1938 Accessory salts in the nutrition of excised tomato roots. Plant Physiol. 13, 391–398.PubMedGoogle Scholar
  450. White P.R. 1939 Glycine in the nutrition of excised tomato roots. Plant Physiol. 14, 527–538.PubMedCrossRefGoogle Scholar
  451. White P.R. 1942 Plant tissue cultures. Annu. Rev. Biochem. 11, 615–628.CrossRefGoogle Scholar
  452. White P.R. 1943 A Handbook of Plant Tissue Culture. The Jacques Catlell Press, Lancaster, Pa.Google Scholar
  453. White P.R. 1954 The Cultivation of Animal and Plant Cells. 1st. edition. Ronald Press, New York.Google Scholar
  454. Whittington W.J. 1959 The role of boron in plant growth. II. The effect on growth of the radicle. J. Exp. Bot. 10, 93–103.CrossRefGoogle Scholar
  455. Williams R.R. 1993 Mineral nutrition in vitro – A mechanistic approach. Aust. J. Bot. 41, 237–251.CrossRefGoogle Scholar
  456. Witte C.P., Tiller S.A., Taylor M.A. & Davies H.V. 2002 Addition of nickel to Murashige and Skoog medium in plant tissue culture activates urease and may reduce metabolic stress. Plant Cell Tissue Organ Cult. 68, 103–104.CrossRefGoogle Scholar
  457. Wood H.N. & Braun A.C. 1961 Studies on the regulation of certain essential biosynthetic systems in normal and crown-gall tumor cells. Proc. Natl. Acad. Sci. USA 47, 1907–1913.PubMedCrossRefGoogle Scholar
  458. Wyn Jones R.G. & Hunt O.R. 1967 The function of calcium in plants. Bot. Rev. 33, 407–426.CrossRefGoogle Scholar
  459. Yamada Y., Zhi-Qi Y. & Ding-Tai T. 1986 Plant regenera-tion from protoplast-derived callus of rice (Oryza sativa L.). Plant Cell Rep. 5, 85–88.CrossRefGoogle Scholar
  460. Yoshida F. & Kohno H. 1982 Effects of media containing NH4 as the sole nitrogen source on cultured cells of tobacco and rice. pp. 231-232 in Fujiwara A. (ed.) 1982 (q.v.).Google Scholar
  461. Yusnita S., Greeve R.L. & Kester R.T. 1990 Micropropa-gation of white Eastern Redbud (Cercis canadensisvar. alba). HortScience 25, 1091 (Abst. 194).Google Scholar
  462. Zawadzka M. & Orlikowska T.K. 2006 The Influence Of Feeddha On Red raspberry cultures during shoot multiplication and adventitious regeneration from explants. Plant Cell Tissue Organ Cult. 85, 145–149.CrossRefGoogle Scholar
  463. Zeldin E.L. & McCown B.H. 1986 Calcium gluconate can be used as a calcium source in plant tissue culture media. p. 57 in Somers D.A., Gegenbach B.G., Biesboer D.D., Hackett W.P. and Green C.E. (eds.) Abstracts VI Int. Cong. Plant Tissue and Cell Culture. Internat. Assoc. Plant Tiss. Cult. Minneapolis, Minn.Google Scholar
  464. Zimmerman R.H. 1981 Micropropagation of fruit plants. Acta Hortic. 120, 217–222.Google Scholar
  465. Zink M.W. & Veliky I.A. 1979 Acid phosphatases of Ipomoea sp. cultured in vitro. 1. Influence of pH and inorganic phosphate on the formation of phosphatases. Can. J. Bot. 57, 739–753.Google Scholar

Copyright information

© springer 2008

Authors and Affiliations

  1. 1.Merriott, SomersetUnited Kingdom
  2. 2.Institute of Biological SciencesUniversity of Wales, AberystwythUnited Kingdom
  3. 3.Plant Research InternationalWageningenThe Netherlands

Personalised recommendations