• V.N. Pervushin
  • A.F. Zakharov
  • V.A. Zinchuk
Part of the NATO Security through Science Series book series


A set of arguments in favor of the concept of “superfluidity” of the cosmic evolution is discussed in the context of the topical problems of modern cosmology.


Conformal Time Modern Cosmology Cosmic Evolution Homogeneous Approximation Bogoliubov Laboratory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barbashov, B.M., Pervushin, V.N., Zakharov, A.F., Zinchuk, V.A., Quantum Gravity as Theory of Superfluidity; gr-qc/0509006.Google Scholar
  2. Behnke, D. et al. (2002) Description of Supernova Data in Conformal Cosmology without Cosmological Constant, Phys. Lett. B 530, 20–26;[gr-qc/0102039]ADSGoogle Scholar
  3. Blaschke, D. et al. (2004) Cosmological Production of Vector Bosons and Cosmic Microwave Background Radiation, Physics of Atomic Nuclei 67, 1050–1062; [hepph/0504225].CrossRefADSGoogle Scholar
  4. Bogoliubov, N.N. (1947) On the Theory of Superfluidity, J. Phys. (USSR) 11, 23–32.Google Scholar
  5. DeWitt, B.C. (1967) Quantum Theory of Gravity. I. The Canonical Theory, Phys. Rev. 160, 1113–1148.CrossRefADSMATHGoogle Scholar
  6. Landau, L.D. (1941) Theory of Superfluid Helium II, ZhETF 11, 592–611 (in Russian); J. Phys. USSR, 5, 71–90; Theory of the Super.uidity of Helium II, PR 60, 356–358.Google Scholar
  7. London, F., The λ-Phenomenon of Liquid Helium and the Bose-Einstein Degeneracy, Nature 141 (1938) 643–644.CrossRefADSGoogle Scholar
  8. Mukhanov, V.F., Feldman H.A. and Brandenberger, R.H. (1992) Theory of Cosmological Perturbations, Phys. Rep. 215, 203–333.CrossRefMathSciNetADSGoogle Scholar
  9. Pervushin, V. and Zinchuk, V. (2005) Quantum Cosmological Origin of Universes, qr-qc/0504123.Google Scholar
  10. Wheeler, J.A. (1968) Superspace and the nature of quantum geometrodynamics, in Batelle Recontres: 1967 Lectures in Mathematics and Physics, edited by C. DeWitt and J.A. Wheeler, New York, 1968, 242–307.Google Scholar
  11. Zakharov, A.F., Zinchuk, V.A., and Pervushin, V.N. (2006), Tetrad Formalism and Frames of References in General Relativity Physics of Particles and Nuclei 37, to be published.Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • V.N. Pervushin
    • 1
  • A.F. Zakharov
    • 2
    • 3
    • 4
  • V.A. Zinchuk
    • 5
  1. 1.JINRBogoliubov Laboratory of Theoretical PhysicsDubna
  2. 2.National Astronomical Observatories of Chinese Academy of SciencesBeijingChina
  3. 3.Astro Space Center of Lebedev Physics Institute of RASMoscow
  4. 4.Institute of Theoretical and Experimental Physics, 25Moscow
  5. 5.JINRBogoliubov Laboratory of Theoretical PhysicsDubna

Personalised recommendations