Treatment and Containment of Contaminated Sediments

  • Jeanne E. Tomaszewski
  • Dennis W. Smithenry
  • Yeo-Myoung Cho
  • Richard G. Luthy
  • Greg V. Lowry
  • Danny Reible
  • Tomas Macek
  • Martina Surá
  • Zuzana Chrastilova
  • Katerina Demnerova
  • Martina Macková
  • Daniela Pavliková
  • Miklos Szekeres
  • Michel Sylvestre
Conference paper
Part of the Nato Science Series: IV: Earth and Environmental Sciences book series (NAIV, volume 73)


Several approaches to the containment and treatment of contaminated sediment were evaluated, including the efficacy of adding activated carbon to sediment as an in-situ stabilization method and the use of conventional and innovative treatment caps. The applicability of phytoremediation for dredged sediments and sediments in shallow water or wetlands was also explored. The effectiveness of any treatment relies on successful application in the field and the emphasis herein is on evaluation of these approaches in the field. A demonstration at Hunters Point, San Francisco Bay, California strives to prove the efficacy of activated carbon treatment, and stands as an example for applications elsewhere. Simultaneous containment and treatment of sediment contaminants is being demonstrated in the Anacostia River, Washington, DC using both organic and metal sequestering agents incorporated into a cap. Both conventional placement and placement in a laminated mat were demonstrated to provide an array of placement approaches. The laminated mat allowed placement of thin layers of high value material at specific location, enabling the use of high value “active” capping materials such as activated carbon and microscale iron. Phyto- and rhizoremediation using plants and related bacteria is a promising approach for treatment of contaminated sediments, but has its inborn limitations. To overcome the slow performance of the process, transgenic plants were evaluated that express the bacterial gene responsible for cleaving PCBs, or metal binding proteins to provide additional metal binding capacity. Continued development of cap and sediment treatments, and approaches to assess effectiveness and long-term reliability are encouraged.


capping activated carbon reactive core mat bioavailability phytoremediation transgenic plants 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adriano, D.C., 2001, Trace elements in terrestrial environments. Springer-Verlag New York Inc., pp. 867.Google Scholar
  2. Alowitz, M.J.; Scherer, M.M. (2002) Kinetics of nitrate, nitrite, and Cr(VI) reduction by iron metal. Environ. Sci. Technol., 36, 299–306.CrossRefGoogle Scholar
  3. Anderson, B.S., Hunt, J.W., Phillips, B.M., Stoelting, M., Becker, J., Fairey, R., Puckett, H.M., Stephenson, M., Tjeerdema, R.S. and Martin, M., 2000, Ecotoxicologic Change at a Remediated Superfund Site in San Francisco Bay, California, USA, Environ. Toxicol. Chem. 19(4): 879–887.CrossRefGoogle Scholar
  4. Anonymous (1998) A citizens guide to phytoremediation. In: EPA Technology Fact Sheet, US EPA 542-F-98-011. US Environmental Protection Agency, Technology Innovation Office, pp 1–6.Google Scholar
  5. Antrim, L.D. and Kohn, N.P., 2000, Post-Remediation Biomonitoring of Pesticides in Marine Waters Near the United Heckathorn Superfund Site, Richmond, California, Prepared for the U.S. Environmental Protection Agency by Battelle Marine Sciences Laboratory, Sequim, Washington; published by Pacific Northwest Laboratory, Richland, Washington.Google Scholar
  6. Battelle, Stanford and NAVFAC, 2004, Hunters Point Shipyard Parcel F Treatability Study Work Plan.Google Scholar
  7. Bizily, S., Rugh, C., Summers, A.O. and Meagher, R., 1999, Phytoremediation of methylmercury pollution: merB expression in Arabidopsis thaliana confers resistance to organomercurials, Proc. Natl. Acad. Sci. USA, 96: 6808–6813.CrossRefGoogle Scholar
  8. Borovka, R., Szekeres, M., Macek, T., Kotrba, P., Sylvestre, M. and Macková, M., 1998, First steps in attempt to enhance the ability of plants to metabolise polychlorinated biphenyls by introduction of bacterial genes to plant DNA. Int. Biodeter. Biodegrad. 42: 243.Google Scholar
  9. Bruggers, J., February 3, 1997, Utah Takes Waste That Arizona Rejected, Scholar
  10. Burken, J.G., Ma, X., Struckhoff, G.C. and Gilbertson, A.W., 2005, Volatile organic compound fate in phytoremediation applications: Natural and engineers systems. Z. Naturforsch. 60: 208–215.Google Scholar
  11. Chaney, R.L., Angle, M.S., McIntosh, M.S., Reeves, R.D., Li, Y.-M., Brewer, E.P., Chen, K.-Y., Roseberg, R.J., Prner, H., Synkowski, E.C., Broadhurst, C.L., Wang, S. and Baker, A.J.M., 2005, Using hyperaccumulator plants to phytoextract soil Ni and Cd. Z. Naturforsch. 60, 190–199.Google Scholar
  12. Chaney, R.L., Malik, M., Li, Y.M., Brown, S.L., Angle, J.S. and Baker, A.J.M., 1997, Phytoremediation of soil metals. Curr. Opin. Biotechnol. 8: 279–284.CrossRefGoogle Scholar
  13. Chasaigne, H., Vacchina, V., Kutchan, T., Zenk, M.H., 2001, Identification of phytochelatin-related peptides in maize seedlings exposed to cadmium and obtained enzymatically in vitro. Phytochemistry 56: 657–668.CrossRefGoogle Scholar
  14. Cho, Y., Smithenry, D.W. and Luthy, R.G., 2005, Preliminary Field Testing of Activated Carbon Mixing and In-Situ Stabilization of PCBs in Sediment, ACS National Meeting Extended Abstracts, American Chemical Society, Division of Environmental Chemistry.Google Scholar
  15. Chroma, L., Moeder, M., Kucerova, P., Macek, T. and Mackova, M., 2003, Plant enzymes in metabolism of polychlorinated biphenyls, Fres. Environ. Bull. 12: 291–295.Google Scholar
  16. Clemens, S., Palmgren, M. and Krämer, U. (2002), A long way ahead: understanding and engineering plant metal accumulation, Trends Plant Sci. 7: 309–315.CrossRefGoogle Scholar
  17. Czako, M., Feng, Y., He, D., Lianh, D. and Marton, L., 2005, Genetic modification of wetland grasses for phytoremediation. Z. Naturforsch. 60: 285–291.Google Scholar
  18. Demnerova, K., Mackova, M., Pazlarova, J., Vosahlikova, M., Novakova, H., Jindrova, E., Ryslava, E., Macek, T., Vrchotova, N., Brenner, V., Pavlu, L., Totevova, S., Kristoffer, T., Focht, D.D., Fava, F., Di Gioia, D., Marchetti, L., Fletcher, J.S., Leigh, M.B., Kucerova, P., Stiborova, H., Mateju, V., Sobotka, M., Kastánek, F., Kastánek, P. and Kasak, L., 2002, PCB-approaches to the removal from the environment, In: Inovative Approaches to the On-Site Assessment and Remediation of Contaminated Soils, D. Reible and K. Demnerova, (eds.), Kluwer Academic Publishers, Dordrecht, pp. 217–263.Google Scholar
  19. Dorlhac de Borne, F., Elmayan, T., de Roton, Ch., de Hys, L. and Tepfer, M., 1998, Cadmium partitioning in transgenic tobacco plants expressing a mammalian metallothionein gene. Mol. Breeding 4: 83–90.CrossRefGoogle Scholar
  20. Francova, K., Mackova, M., Macek, T. and Sylvestre, M., 2004, Ability of bacterial biphenyl dioxygenases from Burkholderia sp. LB400 and Comamonas testosteroni B-356 to catalyse oxygenation of ortho-hydroxychlorobiphenyls formed from PCBs by plants. Environ. Pollut. 127: 41–48.CrossRefGoogle Scholar
  21. Francova, K., Sura, M., Macek, T., Szekeres, M., Bancos, S., Demnerova, K., Sylvestre, M. and Mackova, M., 2003. Generation of plants carrying bacterial enzymes for degradation of polychlorinated biphenyls, Fres. Environ. Bull. 12: 309–313.Google Scholar
  22. Gelvin, S.B., 1998, The introduction and expression of transgenes in plants. Curr. Opinion Biotechnol. 9: 227–235.CrossRefGoogle Scholar
  23. Ghosh, U., Zimmerman J.R. and Luthy, R.G., 2003, PCB and PAH Speciation among Particle Types in Contaminated Harbor Sediments and Effects on PAH Bioavailability, Environ. Sci. Technol. 37(10): 2209–2217.CrossRefGoogle Scholar
  24. Ghosh, U., Talley J.W. and Luthy, R.G., 2001, Particle-Scale Investigation of PAH Desorption Kinetics and Thermodynamics from Sediment, Environ. Sci. Technol. 35(17): 3468–3475.CrossRefGoogle Scholar
  25. Griga, M., Bjelkova, M. and Tejklova, E., 2003, Phytoextraction of heavy metals by fibre crops: Linum usitatissimum L. case study. In: Proceedings of the 2nd European Bioremediation Conference, N. Kalogerakis and E. Psillakis (eds.) Crete, TU Crete, pp 353–356.Google Scholar
  26. Grill, E., Loffler, S., Winnacker, E.-L. and Zenk, M.H., 1989, Phytochelatins, the heavy-metal-binding peptides of plants, are synthesised from glutathione by a specific γ-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase). Proc. Natl. Acad. Sci USA 84: 6838–6846.CrossRefGoogle Scholar
  27. Heaton, A.C.P., Rugh, C.L., Wang, N. and Meagher, R.B., 1998, Phytoremediation of mercury and methylmercury polluted soil using genetically engineered plants. J. Soil Contamin. 7: 497–509.CrossRefGoogle Scholar
  28. Hein, P., Powlowski, J., Barriault, D., Hurtubise, Y., Ahmad, D., Sylvestre, M., 1998, Biphenyl-associated meta-cleavage dioxygenases from Comamonas testosteroni B-356. Can. J. Microbiol. 44: 42–49.CrossRefGoogle Scholar
  29. Kärenlampi, S., Schat, H., Vangronsveld, J., Verkleij, J.A.C., van der Lelie, D., Mergeay, M. and Tervahauta, A.I., 2000, Genetic engineering in the improvement of plants for phytoremediation of metal polluted soils. Environ. Pollut. 107: 225–231.CrossRefGoogle Scholar
  30. Kiekens, L. and Camerlyck, R., 1982, Transfer characteristics for uptake of heavy metals by plants. Landwirtschaftliche Forschung SH39: 255–261.Google Scholar
  31. King, L.D. and Hajjar, L.M., 1990, The residual effect of sewage sludge on heavy-metal content of tobacco and peanut. J. Environl Qual. 19: 738–748.CrossRefGoogle Scholar
  32. Kloke, A., Sauerbeck, D.R. and Vetter, H., 1984, The contamination of soils and plants with heavy metals and the transport of heavy metals with terrestrial food chains. In: Changing metal cycles and human health. J.O. Nriagu ed., Springer-Verlag, Berlin, pp. 113–141.Google Scholar
  33. Kohn, N.P. and Evans, N.R., 2004, Year 6 Post-Remediation Biomonitoring and Phase II Source Investigation at the United Heckathorn Superfund Site, Richmond, California, Sequim, Washington, Prepared for the U.S. Environmental Protection Agency by Battelle Marine Sciences Laboratory, Sequim, Washington; published by Pacific Northwest Laboratory, Richland, Washington.Google Scholar
  34. Koprowski, H. and Yusibov, V., 2001, The green revolution: plants as heterologous expression vectors. Vaccine 19: 2735–2740.CrossRefGoogle Scholar
  35. Kotrba, P., Macek, T. and Ruml, T., 1999, Heavy-metal binding peptides and proteins in plants. A review. Coll. Czech Chem. Commun. 64: 1057–1086.CrossRefGoogle Scholar
  36. Krämer, U. and Chardonnens, A., 2001, The use of transgenic plants in the bioremediation of soils contaminated with trace elements. Appl. Microbiol. Biotechnol. 55: 661–672.CrossRefGoogle Scholar
  37. Krämer, U., 2005, Phytoremediation: novel approaches to cleaning up polluted soils. Curr. Opinion Biotechnol. 16: 133–141.CrossRefGoogle Scholar
  38. Kucerova, P., Mackova, M., Chroma, L., Burkhard, J., Triska, J., Demnerová, K. and Macek, T., 2000, Metabolism of polychlorinated biphenyls by Solanum nigrum hairy root clone SNC-9O and analysis of transformation products. Plant Soil 225: 109–115.CrossRefGoogle Scholar
  39. Liu Y., Majetich, S.A., Tilton, R.D., Sholl, D.S., Lowry, G.V. (2005) TCE Dechlorination Rates, Pathways, and Efficiency of Nanoscale Iron Particles with Different Properties, Environ. Sci. Technol. 39(5) 1338–1345.CrossRefGoogle Scholar
  40. Liu, J.R., Suh, M.Ch. and Choi, D., 2000, Phytoremediation of cadmium contamination: Overexpression of metallothionein in transgenic tobacco plants. Bundesgesundheitsbl-Gesundheitsforsch-Gesundheitsschutz 2, 126–130.CrossRefGoogle Scholar
  41. Lowry, G.V., Johnson, K.M. (2004) Congener Specific PCB Dechlorination by Micro scale and Nanoscale Zero-valent Iron in a Methanol/water solution. Environ. Sci. Technol., 38(19) 5208–5216.CrossRefGoogle Scholar
  42. Macek, T. and Macková, M., 1999, Phytoremediation — the use of plants to remove xenobiotics and pollutants from the environment, including transgenic plants tailored for this purpose. Biologia 54: 70–73.Google Scholar
  43. Macek, T., Francova, K., Kochankova, L., Lovecka, P., Ryslava, E., Rezek, J., Sura, M., Triska, J., Demnerova, K. and Mackova, M., 2004b, Phytoremediation: Biological cleaning of a polluted environment. Rev. Environ. Health 19: 63–82.Google Scholar
  44. Macek, T., Kotrba, P., Ruml, T., Skacel, F. and Mackova, M., 1997a, Accumulation of cadmium by hairy root cultures. In: Doran P.M. (ed.), Hairy Roots: Culture and Application, Harwood Academic Publishers, London, pp 133–138.Google Scholar
  45. Macek, T., Kotrba, P., Suchova, M., Skacel, F., Demnerová, K. and Ruml, T., 1994, Accumulation of cadmium by hairy root cultures. Biotechnol. Lett. 16: 621–624.CrossRefGoogle Scholar
  46. Macek, T., Macková, M., Burkhard, J. and Demnerová, K., 1998, Introduction of green plants for the control of metals and organics in remediation. In: Holm FW (ed.) Effluents from Alternative Demilitarization Technologies. NATO PS Ser. 1, Vol. 12, Kluwer Acad. Publishers, Dordrecht, pp 71–85.Google Scholar
  47. Macek, T., Mackova, M., Kotrba, P., Truksa, M., Singh-Cundy, A., Scouten, W.H. and Yancey, N., 1997b, Attempts to prepare transgenic tobacco with higher capacity to accumulate heavy metals containing yeast metallothionein combined with a polyhistidine, In: Environmental Biotechnology, Verachtert H. and Verstraete W. eds., Technological Institute Gent, pp 263–266.Google Scholar
  48. Macek, T., Mackova, M., Kucerova, P., Chroma, L., Burkhard, J. and Demnerova, K. (2002a) Phytoremediation, in M. Hofman and J. Anne (series eds.), Focus on Biotechnology, Vol. 3, Kluwer Academic Publishers, Dordrecht, pp 115–137.Google Scholar
  49. Macek, T., Macková, M., Pavlíková, D., Száková, J., Truksa, M., Cundy, A.S., Kotrba, P., Yancey, N., Scouten, W. H., 2002b, Accumulation of cadmium by transgenic tobacco. Acta Biotechnol. 22: 101–106.CrossRefGoogle Scholar
  50. Macek, T., Macková, M., Truksa, M., Singh-Cundy, A., Kotrba, P., Yancey, N. and Scouten W.H., 1996, Preparation of transgenic tobacco with a yeast metallothionein combined with a polyhistidine tail. Chem. Listy 90: 690.Google Scholar
  51. Macek, T., Pavliková, D. and Macková, M., 2004a, Phytoremediation of Metals and Inorganic Pollutants. In: Soil Biology, Applied Bioremediation and Phytoremediation, Vol. 1, A. Singh and O.P. Ward, eds., Springer Verlag Berlin, Heidelberg, pp. 135–157.Google Scholar
  52. Macek, T., Surá, M., Pavlíková, D., Francová, K., Scouten, W.H., Szekeres, M., Sylvestre, M. and Macková, M., 2005, Can Tobacco Have Potentially Beneficial Effect to our Health? Z. Naturforschung., Vol. 60c, 292–298.Google Scholar
  53. Mackova, M., Chroma, L., Kucerova, P., Burkhard, J., Demnerova, K. and Macek, T., 2001, Some aspects of PCBs metabolism by horseradish cells. Int. J. Phytorem. 3, 401–414.CrossRefGoogle Scholar
  54. Macková, M., Macek, T., Burkhard, J., Ocenasková, J., Demnerová, K. and Pazlarová, J., 1997a, Biodegradation of polychlorinated biphenyls by plant cells. Int. Biodeter. Biodegrad. 39: 317–325.CrossRefGoogle Scholar
  55. Mackova, M., Macek, T., Kucerova, P., Burkhard, J., Pazlarova, J., Demnerova, K., 1997b. Degradation of polychlorinated biphenyls by hairy root culture of Solanum nigrum, Biotechnol. Lett. 19: 787–790.CrossRefGoogle Scholar
  56. Maliga, P., 1990, Transformation of N. tabacum by Agrobacterium and particle gun, Molecular and Developmental Biology of Plants, Cold Spring Harbor Course.Google Scholar
  57. McGarvey, B., Hammond, J., Dienet, M., Hooper, D., Fu, Z., Dietzschold, B., Koprowski, H. and Michaels, F., 1995, Expression of the rabies virus glycoprotein in transgenic tomatoes, Bio/Technology 13: 1484–1489.CrossRefGoogle Scholar
  58. McLeod, P.B., Van Den Heuvel-Greve, M.J., Allen-King, R.M., Luoma S.N. and Luthy, R.G., 2004, Effects of particulate carbonaceous matter on the bioavailability of benzo[a]pyrene and 2,2 ′,5,5 ′-tetrachlorobiphenyl to the clam, Macoma balthica, Environ. Sci. Technol. 38(17): 4549–4556.CrossRefGoogle Scholar
  59. Meagher, R.B., 2000, Phytoremediation of toxic elemental and organic pollutants, Curr. Opinion Plant Biol. 3: 153–162.CrossRefGoogle Scholar
  60. Millward, R.N., Bridges, T.S., Ghosh, U., Zimmerman J.R. and Luthy, R.G., 2005, Addition of activated carbon to sediments to reduce PCB bioaccumulation by a polychaete (Neanthes arenaceodentata) and an amphipod (Leptocheirus plumulosus), Environ. Sci. Technol. 39(8): 2880–2887.CrossRefGoogle Scholar
  61. Moore, A.M., De Leon, C.H., Young, T.M. (2003). Rate and Extent of Aqueous Perchlorate Removal by Iron Surfaces. Environ. Sci. Technol. 37(14); 3189–3198.CrossRefGoogle Scholar
  62. Murphy, P.J., Marquette, A., Reible, D.D., Lowry, G.V. (2005). “Predicting the Performance of Activated Carbon-, Coke-, and Soil-amended Thin Layer Sediment Caps.” J. Environ. Eng. (submitted).Google Scholar
  63. Murphy, P.J., Olsta, J., Zhu, Y., Reible, D., Lowry, G.V. (2005), Development and Placement of an “Active” Sorbent-amended Thin Layer Sediment Cap in the Anacostia River. Journal Soil Sed. Contam., an International Journal (submitted).Google Scholar
  64. Nesnerová, P., Sebek, P., Macek, T. and Svatos, A., 2004. First semi-synthetic preparation of sex pheromones. Green Chemistry 6, 305–307.CrossRefGoogle Scholar
  65. Old, R.W. and Primrose, S.B., 1994, Gene transfer to plants. Principles of Gene Manipulation, Blackwell Scientific Publications.Google Scholar
  66. Ondrej, M., Drobnik, J., Gartland, K.M.A. and Gartland, J.S., 1999, Gene engineering, (in Czech, textbook of TEMPUS PHARE programme), ICT Prague.Google Scholar
  67. Oven, M., Raith, K., Neubert, R.H.H., Kutchan, T.M. and Zenk, M.H., 2001, Homophytochelatins are synthesized in response to cadmium in Azuki beans. Plant Physiol. 126: 1275–1280.CrossRefGoogle Scholar
  68. Palermo, M., Maynord, S., Miller, J. and Reible, D. (1998). “Guidance for In-Situ Subaqueous Capping of Contaminated Sediments,” EPA 905-B96-004, Great Lakes National Program Office, Chicago, IL.Google Scholar
  69. Pavlíková, D., Macek, T., Macková, M., Surá, M., Száková, J., Tlustoš, P., 2004a, The evaluation of cadmium, zinc, and nickel accumulation ability of transgenic tobacco bearing different transgenes. Plant Soil Environ. 50, 513–517.Google Scholar
  70. Pavlíková, D., Macek, T., Macková, M., Száková, J., Balík, J., 2004b, Cadmium tolerance and accumulation in transgenic tobacco plants with yeast metallothionein combined with a polyhistidine tail. Int. Biodeter. Biodegrad., 233–237.Google Scholar
  71. Peňa, L. and Séguin, A., 2001, Recent advances in the genetic transformation of trees. Trends Biotechnol. 19: 500–506.CrossRefGoogle Scholar
  72. Pieper, D.H., 2005, Aerobic degradation of polychlorinated biphenyls. Appl. Microbiol. Biotechnol. 67: 170–191.CrossRefGoogle Scholar
  73. Reible, D.D., Hayes, D., Lue-Hing, C., Patterson, J., Bhowmik, N., Johnson, M. and Teal J. (2003) “Comparison of the long-term risks of removal and In-Situ management of contaminated sediments in the Fox River,”, Journal Soil Sed. Contam., 12(3): 325–344.Google Scholar
  74. Ryslava, E., Krejčík, Z., Macek, T., Novakova, H. and Mackova, M., 2003, Study of PCB biodegradation in real contaminated soil. Fres. Environ. Bull. 12(3): 296–301.Google Scholar
  75. Soudek, P., Tykva, R., Kalisova, I. and Vanek T., 2003, Phytoremediation of heavy metals by sunflower and corn plants. In: Proceedings of the 2nd European Bioremediation Conference, Kalogerakis N and Psillakis E eds., Crete, TU Crete, pp 353–356.Google Scholar
  76. Starr, R.C. and Cherry, J.A. (1994) In-Situ Remediation of Contaminated Ground Water: The Funnel-and-Gate System, Ground Water, 32,3, 465–476.CrossRefGoogle Scholar
  77. Surá, M., Macková, M., Szekeres, M., Sylvestre, M., Chrastilová, Z., Macek, A., Transgenic T. plants — tool for preferable phytoremediation of PCB and other organic pollutants. In: Proceedings of the 2nd European Bioremediation Conference. Kalogerakis N., ed., P71 Chania, Crete, 2005 CD-ROM, Tech. University of CreteGoogle Scholar
  78. Swartz, R.C., Cole, F.A., Lamberson, J.O., Ferraro, S.P., Schults, D.W., DeBen, W.A., Lee II, H. and Ozretich, R.J., 1994, Sediment Toxicity, Contamination and Amphipod Abundance at a DDT-and Dieldrin-Contaminated Site in San Francisco Bay, Environ. Toxicol. Chem. 13(6): 949–962.Google Scholar
  79. Talbert, B., Thibodeaux, L.J., Valsaraj, K.T. (2001). “Effectiveness of Very Thin Soil Layers in Chemical Release from Bed Sediment.” Environ. Prog. 20(2), 103–107.CrossRefGoogle Scholar
  80. Talley, J.W., Ghosh, U., Tucker, S.G., Furey, J.S., Luthy, R.G. (2002). “Particle-scale understanding of the bioavailability of PAHs in sediment. Environ. Sci. Technol., 36, 477–483.CrossRefGoogle Scholar
  81. Thornann, R.V. and Connolly, J.P., 1984. Model of PCB in the Lake Michigan lake trout food chain. Environ. Sci. Technol. 18(2):65–71.Google Scholar
  82. Tlustos, P., Pavlikova, D., Balik, J., Szakova, J., Hanc, A. and Balikova, M., 1998, The accumulation of arsenic and cadmium in plants and their distribution. Rostlinna vyroba 44: 463–469.Google Scholar
  83. USEPA, 1996, EPA Superfund Record of Decision: United Heckathorn Co., Richmond, California. EPA ID# CAD981436363, U.S. Environmental Protection Agency, Region IX, San Francisco, California.Google Scholar
  84. Vandecasteele, B., Meers, E., Vervaeke, P., De Vos, B., Quataert, P., Tak, F.M.G., 2005, Growth and trace metal accumulation of two Salix clones on sediment-derived soils with increasing contamination levels. Chemosphere 58, 995–1002.CrossRefGoogle Scholar
  85. Werner, D., Higgins C.P. and Luthy, R.G., 2005, The sequestration of PCBs in Lake Hartwell sediment with activated carbon, Water Res 39(10): 2105–2113.CrossRefGoogle Scholar
  86. Weston, D.P., Jarman, W.M., Cabana, G., Bacon, C.E. and Jacobson, L.A., 2002, An Evaluation of the Success of Dredging as Remediation at a DDT-Contaminated Site in San Francisco Bay, California, USA, Environ. Toxicol. Chem. 21(10): 2216–2224.CrossRefGoogle Scholar
  87. Zimmerman, J.R., Werner, D., Ghosh, U., Millward, R.N., Bridges, T.S. and Luthy, R.G., 2005, Effects of dose and particle size on activated carbon treatment to sequester polychlorinated biphenyls and polycyclic aromatic hydrocarbons in marine sediments, Environ. Toxicol. Chem. 24(7): 1594–1601.CrossRefGoogle Scholar
  88. Zimmerman, J.R., Ghosh, U., Millward, R.N., Bridges, T.S. and Luthy, R.G., 2004, Addition of carbon sorbents to reduce PCB and PAH bioavailability in marine sediments: Physicochemical tests, Environ. Sci. Technol. 38(20): 5458–5464.CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Jeanne E. Tomaszewski
    • 1
  • Dennis W. Smithenry
    • 1
  • Yeo-Myoung Cho
    • 1
  • Richard G. Luthy
    • 1
  • Greg V. Lowry
    • 2
  • Danny Reible
    • 3
  • Tomas Macek
    • 4
  • Martina Surá
    • 5
  • Zuzana Chrastilova
    • 5
  • Katerina Demnerova
    • 5
  • Martina Macková
    • 5
  • Daniela Pavliková
    • 6
  • Miklos Szekeres
    • 7
  • Michel Sylvestre
    • 8
  1. 1.Stanford UniversityStanford
  2. 2.Carnegie Mellon UniversityPittsburgh
  3. 3.The University of Texas at AustinAustin
  4. 4.Department of Natural Products, Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesPragueCzech Republic
  5. 5.Dept. of Biochemistry and Microbiology, Faculty of Food and Biochemical TechnologyICT PraguePragueCzech Republic
  6. 6.Department of Agrochemistry, Faculty of AgronomyCzech Agricultural UniversityPrague - SuchdolCzech Republic
  7. 7.Biological Research CenterHungarian Academy of SciencesSzegedHungary
  8. 8.INRS - IAFPointe-ClaireCanada

Personalised recommendations