• A. Revil
  • K. Titov
  • C. Doussan
  • V. Lapenna
Part of the NATO Science Series book series (NAIV, volume 71)


The self-potential method consists in the passive measurement of the distribution of the electrical potential at the ground surface of the Earth and in boreholes. The purpose of this method is to map the electrical potential to reveal one or several polarization mechanisms at play in the ground. In some cases, the self-potential signals are monitored with a network of non-polarisable electrodes, which provides both a better signal-to-noise ratio and the possibility to discriminate between various sources. The two main contributions to the self-potential signals are (1) the streaming potential or hydroelectric coupling (Fournier, 1989; Birch, 1993, 1998; Aubert and Yéné Atangana, 1996; Revil and Leroy, 2001) and (2) electro-chemical processes (membrane or diffusion potentials) associated with gradients of the chemical potentials of ionic species in the pore water (e.g., Sen, 1991; Naudet et al., 2003, 2004; Revil and Leroy, 2005). In the former case, the self-potential signal correponds to the electrical field associated with the flow of ground water in a porous medium and more precisely with the drag of the excess of charge generally contained in the so-called diffuse layer in the vicinity of the mineral surface (e.g. Revil and Leroy, 2004). If the chemical potential concerns the electrons (redox potential), the transfer of electrons through an electronic conductor also generates self-potential signals in the surrounding conductive medium as discussed by Sato and Mooney (1960).


Porous Medium Hydraulic Conductivity Hydraulic Head Vadose Zone Geophysical Survey 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adler, P.M., J.F. Thovert, C. Jacquin, P. Morat, and J.L. Le Mouël, 1997. Electrical signals induced by the atmospheric pressure variations in unsaturated media. Comptes Rendus De l’Académie Des Sciences Série II, Fascicule a, Sciences de la Terre et des Planètes, Vol. 324, pp. 711–718.Google Scholar
  2. Albouy, Y., S. Cabrera, C. Camerlynck, M. Dietrich, C. Doussan, N. Florsch, S. Garambois, S. Hautot, L. Jouniaux, E. Marmet, M. Menviell, H. Perroud, D. Rousset, L. Szarka, and P. Tarits, 2000. PNRH Géophysique – Hydrologie 99: Un premier compte rendu des expérimentations menées sur le site INRA d’Avignon, Colloque PNRH 2000, Toulouse, May 16–17, 19–143.Google Scholar
  3. Atangana, J.Q.Y., B. Nyeck, D. Bitom, and H. Robain, 2003. Self-potential anomalies in the lateritic cover of the Nsimi watershed in southern Cameroon: Origin and influence of electrical and granulometric parameters. J. Appl. Geophys., 54, 85–96.CrossRefGoogle Scholar
  4. Aubert, M., and Q.Y. Atangana, 1996. Self-potential method in hydrogeological exploration of volcanic areas. Ground Water, 34, 1010–1016.CrossRefGoogle Scholar
  5. Aubert, M., I.N. Dana, and A. Gourgaud, 2000. Internal structure of the Merapi summit from self-potential measurements. J. Volcanol. Geotherm. Res., 100, 337–343.CrossRefGoogle Scholar
  6. Béhaegel, M., J.-C. Gourry, and J.-F. Girard, 2004. Geophysical measurements on an ancient coking plant contaminated by tar, GU 1st General Assembly, Nice, 25–30 April 2004, Poster HS17-1FR2P-0110 (session EGU04-A-01783).Google Scholar
  7. Bigalke, J., and E.W. Grabner, 1997. The geobattery model: A contribution to large scale electrochemistry, Electrochem. Acta, 42, 3443–3452.CrossRefGoogle Scholar
  8. Birch, F.S., 1993. Testing Fournier’s method for finding water table from self-potential, Ground Water, 31, 50–56.CrossRefGoogle Scholar
  9. Birch, F.S., 1998. Imaging the water table by filtering self-potential profiles, Ground Water, 36, 779–782.CrossRefGoogle Scholar
  10. Bogoslovsky, V.A., and A.A. Ogilvy, 1977. Geophysical methods in the investigations of landslides, Geophysics, 42, 562–571.CrossRefGoogle Scholar
  11. Bogoslovsky, V.A., and A.A. Ogilvy, 1973. Deformation of natural electric fields near drainage structures, Geophys. Prospect., 21, 716–723.CrossRefGoogle Scholar
  12. Bruno, F., and F. Marillier, 2000. Test of high-resolution seismic reflection and other geophysical techniques on the Boup Landslide in the Swiss Alps, Surv. Geophys., 21, 333–348.CrossRefGoogle Scholar
  13. Buselli, G., and K. Lu, 2001. Groundwater contamination monitoring with multichannel electrical and electromagnetic methods, J. Appl. Geophys., 48, 11–23.CrossRefGoogle Scholar
  14. Butler, J.J., and X. Zhan, 2004. Hydraulic tests in highly permeable aquifers, Water Resour. Res., 40, W12402, doi: 10.1029/2003WR002998.CrossRefGoogle Scholar
  15. Cavalcante, F., S. Fiore, G. Piccareta, and F. Tateo, 2003. Geochemical and mineralogical approaches to assessing provenance and deposition of shales: A case study. Clay Miner., 38, 383–397.CrossRefGoogle Scholar
  16. Chène, G., C. Brunjail, N. Aouaissia-Abdallah, and G. Bastian, 1995. Détection de flux hydriques dans les géomatériaux par mesure de polarisation spontanée, in Proceedings Journées détude sur les milieux poreux et transferts dans les structures du génie civil et de l’habitat, janvier 1995, Société Française des Thermiciens, Vol. 1–9.Google Scholar
  17. Colangelo, G., J. Heinicke, U. Koch, V. Lapenna, G. Martinelli, and L. Telesca, 2005. Results of gas flux records in the seismically active area of Val d’Agri (Southern Italy). Annals Geophys., 48 (1), 55–63.Google Scholar
  18. Corwin, R.F., 1990. The self-potential method for environmental and engineering applications, in Geotechnical and environmental Geophysics, vol.1: Reviews and tutorial, edited by S.H. Ward, Society of Exploration Geophysics, Tucson, pp. 127–145.Google Scholar
  19. Corwin, R.F., and D.B. Hoover, 1979. The self-potential method in geothermal exploration, Geophysics, 44 (2), 226–245.CrossRefGoogle Scholar
  20. Cruden, D.M., and D.J. Varnes, 1996. Landslide types and processes and mitigation, in Landslides – investigation and mitigation, edited by A.K. Turner and R.L. Schuster, Transportation Research Board, Spec. Rep. 247, National Academy of Sciences, Washington, DC, pp. 36–75.Google Scholar
  21. Darnet, M., G. Marquis, and P. Sailhac, 2003. Estimating aquifer hydraulic properties from the inversion of surface streaming potential anomalies, Geophys. Res. Lett., 30, 1679, doi: 10.1029/2003GL017631.CrossRefGoogle Scholar
  22. Darnet, M., and G. Marquis, 2004. Modelling streaming potential (SP) signals induced by water movement in the vadose zone, J. Hydrol., 285, 114–124.CrossRefGoogle Scholar
  23. Doussan, C., L. Jouniaux, and J.L. Thony, 2002. Variations of self-potential and unsaturated water flow with time in sandy loam and clay loam soils. J. Hydrol., 267, 173–185.CrossRefGoogle Scholar
  24. Ernstson, K., and U. Scherer, 1986. Self-potential variations wirh time and their relation to hydrogeological and meteorological parameters, Geophysics, 51, 1967–1977.CrossRefGoogle Scholar
  25. Fitterman, D.V., 1978. Electrokinetic and magnetic anomalies associated with dilatant regions in a layered earth, J. Geophys. Res., 83, 5923–5932.Google Scholar
  26. Fitterman, D.V., 1979. Calculations of self-potential anomalies near vertical contacts, Geophysics, 44, 195–205.CrossRefGoogle Scholar
  27. Fournier, C., 1989. Spontaneous potentials and resistivity surveys applied to hydrogeology in a volcanic area: Case history of the Chaîne des Puys (Puy-de-Dôrne, France), Geophys. Prospecting, 37, 647–668.CrossRefGoogle Scholar
  28. Fox, R.W., 1830. On the electromagnetic properties of metalliferous veins in the mines of Cornwall, Philosoph. Transact. Royal Soc., 130, 399.Google Scholar
  29. Frischknecht, F.C., L. Muth, R. Grette, T. Buckley, and B. Kornegay, 1983. Geophysical methods for locating abandoned wells, U.S. Geol. Surv. Open-File Report 83-702.Google Scholar
  30. Gallipoli, M., V. Lapenna, P. Lorenzo, M. Mucciarelli, A. Perrone, S. Piscitelli, and F. Sdao, 2000. Comparison of geological and geophysical prospecting techniques in the study of a landslide in Southern Italy. Eur. J. Environ. Eng. Geophys., 4, 117–128.Google Scholar
  31. Gex, P., 1980. Phénomènes d’électrofiltration liés à quelques sites de barrages, Bull. Soc. Vaud Sci. Nat., 357 (75), 39–50.Google Scholar
  32. Gibert, D., and M. Pessel, 2001. Identification of sources of potential fields with the continuous wavelet transform: Application to self-potential profiles, Geophys. Res. Lett., 28, 1863–1866.CrossRefGoogle Scholar
  33. Gorelik, A.M., and I.P. Nesterenko, 1956. Metod potentsialov elektrofil’tratsii pri opredelenii radiusa depressionnoi voronki v khode otkachki iz skvazhini. (Method of electro-filtration potential in the determination of radius of the depression cone during a pumping test from borehole, in russian), Izvestia Akad. Nauk SSSR, Ser. Geofiz. (Solid Earth Physics), 11, 1361–1363.Google Scholar
  34. Guichet, X., L. Jouniaux, and J.-P. Pozzi, 2003. Streaming potential of a sand column in partial saturation conditions, J. Geophys. Res., 108, 2141, doi: 10.1029/2001JB001517.CrossRefGoogle Scholar
  35. Hack, R., Geophysics for slope stability, 2000. Surv. Geophys., 21, 423–448.CrossRefGoogle Scholar
  36. Hämmann, M., H.R. Maurer, A.G. Green, and H. Horstmeyer, 1997. Self-potential image reconstruction: Capabilities and limitations, J. Environ. Eng. Geophys., 2, 21–35.CrossRefGoogle Scholar
  37. Hauk, O., A. Keil, T. Elbert, and M.M. Müller, 2002. Comparison of data transformation procedures to enhance topographical accuracy in time-series analysis of the human EEG, J. Neurosci. Methods, 113, 111–122.CrossRefGoogle Scholar
  38. Hutchinson, D.J., R. Harrap, M. Diederichs, M. Villeneuve, and N. Kjelland, 2003. Geotechnical rule development for ground instability assessment using intelligent GIS and networked monitoring sensors. 3rd Canadian Conference on Geotechnique and Natural Hazards. Edmonton, Alberta, Canada, June 9 and 10.Google Scholar
  39. Iuliano, T., P. Mauriello, and D. Patella, 2002. Looking inside Mount Vesuvius by potential fields integrated probability tomographies, J. Volcanology Geothermal Res., 113, 363–378.CrossRefGoogle Scholar
  40. Keller, G.V., and F.C. Frischknect, 1966. Electrical methods in Geophysical Prospecting, Pergamon, Oxford, p. 517.Google Scholar
  41. Lachassagne, P., and M. Aubert, 1989. Etude des phénomènes de polarisation spontanée (PS) enregistrées dans un sol lors de transferts hydriques verticaux, Hydrogéologie, 1, 7–17.Google Scholar
  42. Lapenna, V., P. Lorenzo, A. Perrone, S. Piscitelli, E. Rizzo, and F. Sdao, 2003. High-resolution geoelectrical tomographies in the study of the Giarrossa landslide (Potenza, Basilicata). Bull. Eng. Geol. Environ., 62, 259–268.CrossRefGoogle Scholar
  43. Lapenna, V., P. Lorenzo, A. Perrone, S. Piscitelli, E. Rizzo, and F. Sdao, 2005. 2D electrical resistivity imaging of some complex landslides in the Lucanian Apennine chain, Southern Italy, geophysics, 70 (3), B11–B18.Google Scholar
  44. Loke, M.H., and R.D. Barker, 1996. Rapid least-squares inversion of apparent resistivity pseudosections by a quasi-Newton method. Geophys. Prospect., 44, 131–152.CrossRefGoogle Scholar
  45. Mauritsch, H.J., W. Seiberl, R. Arndt, A. Romer, K. Schneiderbauer, and G.P. Sendlhofer, 2000. Geophysical investigations of large landslides in the Carnic region of southern Austria. Eng. Geol., 56, 373–388.CrossRefGoogle Scholar
  46. McCann, D.M., and A. Forster, 1990. Reconnaissance geophysical methods in landslide investigations, Eng. Geol., 29, 59–78.CrossRefGoogle Scholar
  47. Moore, J.R., S.D. Glaser, H.F. Morrison, and G.M. Hoversten, 2004. The streaming potential of liquid carbon dioxide in Berea sandstone, Geophys. Res. Lett., 31, L17610, doi: 10.1029/2004GL020774.CrossRefGoogle Scholar
  48. Moore J.R., and S.D. Glaser, 2004. Laboratory observation of an advancing boiling front in a porous medium and correlation to self-potential measurements, in Proceedings 29th Workshop on Geothermal reservoir engineering, Stanford University, Stanford, CA, January 26–28.Google Scholar
  49. Morat P., and J.M. Le Mouël, 1992. Signaux électriques engendrés par des varaitions de contrainte dans des roches poreuses non saturées, Compt. Rend. Acad. Sci. Sér., 2, 315, 955–963.Google Scholar
  50. Morat P, J.L. Le Mouël, and A. Granier, 1994. Electrical Potential on a Tree – a Measurement of the Sap Flow, Compt. Rend. Acad. Sci. Sér. III – Sci. Vie, Life Sci., 317, 98–101.Google Scholar
  51. Morgan, F.D., E.R. Williams, and T.R. Madden, 1989. Streaming potentials properties of Westerly granite with applications, J. Geophys. Res., 94, 12449–12461.CrossRefGoogle Scholar
  52. Murashko, A.M., B.K. Khasenevich, and P.I. Firsiuk, 1981. Vremennie recomendatsii po premeneniu geofisicheskikh metodov pri iziskaniyakh dlia meliorativnogo stroitel’stva v usloviakh BSSR. (Recommendations for use of geophysical methods for investigations for amending construction in BSSR, in Russian), Belnii MVH, Minsk, p. 51.Google Scholar
  53. Naudet, V., A. Revil, E. Rizzo, J.-Y. Bottero, and P. Bégassat, 2004. Groundwater redox conditions and conductivity in a contaminant plume from geoelectrical investigations, Hydrol. Earth Syst. Sci., 8 (1), 8–22.CrossRefGoogle Scholar
  54. Naudet, V., A. Revil, J.-Y. Bottero, and P. Bégassat, 2003. Relationship between self-potential (SP) signals and redox conditions in contaminated groundwater, Geophys. Res. Lett., 30 (21), 2091, doi: 10.1029/2003GL018096.CrossRefGoogle Scholar
  55. Nimmer R.E., and J.L. Osiensky, 2002. Direct current and self-potential monitoring of an evolving plume in partially saturated fractured rock. J. Hydrol., 267, 258–272.CrossRefGoogle Scholar
  56. Patella, D., 1997a. Introduction to gound surface self-potential tomography. Geophys. Prospect., 45, 653–681.CrossRefGoogle Scholar
  57. Patella, D., 1997b. Self-potential global tomography including topographic effects, Geophys. Prospect., 45, 843–863.CrossRefGoogle Scholar
  58. Perrier, F., and P. Morat, 2000. Characterization of electrical daily variations induced by capillary flow in the non-saturated zone. Pure Appl. Geophys., 157, 785–810.CrossRefGoogle Scholar
  59. Perrier, F., and S.R. Pant, 2005. Noise reduction in long-term self-potential monitoring with travelling electrode referencing. Pure Appl. Geophys., 162, 165–179.CrossRefGoogle Scholar
  60. Perrier, F.E., G. Petiau, G. Clerc, V. Bogorodsky, E. Erkul, L. Jouniaux, D. Lesmes, J. Macnae, J.M. Meunier, D. Morgan, D. Nascimento, G. Oettinger, G. Schwarz, H. Toh, M.J. Valiant, K. Vozoff, and O. Yazici-Cakin, 1997. A one-year systematic study of electrodes for long period measurements of the electric field in geophysical environments. J. Geomagn. Geoelectr., 49, 1677–1696.Google Scholar
  61. Perrone, A., A. Iannuzzi, V. Lapenna, P. Lorenzo, S. Piscitelli, E. Rizzo, and F. Sdao, 2004. High-resolution electrical imaging of the Varco d’Izzo earthflow (Southern Italy). J. Appl. Geophys., 56 (1), 17–29.CrossRefGoogle Scholar
  62. Perry, J.W., C.H. Corry, and T. Madden, 1996. Monitoring leakage from underground storage tanks (UST) using spontaneous polarization method, SEG (extended abstract).Google Scholar
  63. Pisarenko, D., P. Morat, and J.-L. Le Mouel, 1996. On a possible mechanism of sandstone alteration: Evidence from electric potential measurements, Comptes-Rendus De L’Académie Des Sciences Série Ii Fascicule a-Sciences De La Terre et des Planètes, Vol. 322, pp. 17–24.Google Scholar
  64. Poldini, E., 1938. Geophysical exploration by spontaneous polarization methods, Mining Mag., London, 59, 278–282, 347–352.Google Scholar
  65. Polemio, M., and F. Sdao, 1998. Heavy rainfalls and extensive landslides occurred in Basilicata, southern Italy, in 1976, in Proc. 8th Int. Cong. EEGS, Vancouver, Canada, pp. 1849–1855.Google Scholar
  66. Pride, S.R., 1994. Governing equations for the coupled electromagnetics and acoustics of porous media, Phys. Rev. B, 50, 15678–15696.CrossRefGoogle Scholar
  67. Revil, A., P. Leroy, and K. Titov, 2005. Characterization of transport properties of argillaceous sediments. Application to the Callovo-Oxfordian Argillite, J. Geophys. Res., 110, B06202, doi: 10.1029/2004JB003442.CrossRefGoogle Scholar
  68. Revil A., and A. Cerepi, 2004. Streaming potential in two-phase flow condition, Geophys. Res. Lett., 31(11), L11605, doi:1029/2004GL020140.CrossRefGoogle Scholar
  69. Revil, A., and P. Leroy, 2001. Hydroelectric coupling in a clayey material, Geophys. Res. Lett., 28 (8), 1643–1646.CrossRefGoogle Scholar
  70. Revil, A., and P. Leroy, 2004. Governing equations for ionic transport in porous shales, J. Geophys. Res., 109, B03208, doi : 10.1029/2003JB002755.CrossRefGoogle Scholar
  71. Revil, A., V. Naudet, and J.D. Meunier, 2004. The hydroelectric problem of porous rocks: Inversion of the water table from self-potential data, Geophys. J. Int., 159, 435–444.CrossRefGoogle Scholar
  72. Revil, A., V. Naudet, J. Nouzaret, and M. Pessel, 2003. Principles of electrography applied to self-potential electrokinetic sources and hydrogeological applications, Water Resour. Res., 39 (5), 1114, doi: 10.1029/2001WR000916.CrossRefGoogle Scholar
  73. Revil, A., D. Hermite, M. Voltz, R. Moussa, J.-G. Lacas, G. Bourrié, and F. Trolard, 2002. Self-potential signals assosiated with variations of the hydraulic head during an infiltration experiment, Geophys. Res. Lett., 29 (7), 1106, doi: 10.1029/2001GL014294.CrossRefGoogle Scholar
  74. Revil, A., P.A. Pezard, and P.W.J. Glower, 1999. Streaming potential in porous media: 1.Theory of the zeta potential. J. Geophys. Res., 104, 20021–20031.CrossRefGoogle Scholar
  75. Revil, A., H. Schwaeger, L.M. Cathles, and P.D. Manhardt, 1999. Streaming potential in porous media 2. Theory and application to geothermal systems, J. Geophys. Res., 104, 20033–20048.CrossRefGoogle Scholar
  76. Rizzo, E., B. Suski, A. Revil, S. Straface, and S. Troisi, 2004. Self-potential signals associated with pumping-test experiments, J. Geophys. Res., 109, B10203, doi: 10.1029/2004JB003049.CrossRefGoogle Scholar
  77. Sailhac, P., M. Darnet, and G. Marquis, 2004. Electrical streaming potential measured at the ground surface: Forward modelling and inversion issues for monitoring infiltration and characterizing the vadose zone, Vadose Zone J., 3, 1200–1206.CrossRefGoogle Scholar
  78. Sato, M., and H.M. Mooney, 1960. The electrochemical mechanism of sulfide self-potentials, Geophysics, 25 (1), 226–249.CrossRefGoogle Scholar
  79. Schmutz, M., Y. Albouy, R. Guerin, O. Maquaire, J. Vassal, J.J. Schott, and M. Descloitres, 2000. Joint electrical and Time domain electromagnetism (TdEM) data inversion applied to the Super Sauze earthflow (France), Surv. Geophys., 21, 371–390.CrossRefGoogle Scholar
  80. Schlumberger, C., M. Schlumberger, and E.G. Leonardon, 1934. A new contribution to subsurface studies by means of electrical measurements in drill holes, Trans. AIME, 110.Google Scholar
  81. Sekihara, K. et al., 1997. Noise covariance incorporated MEG-MUSIC algorithm: A method for multiple-dipole estimation tolerant of the influence of background brain activity, IEEE Trans. Biomed. Eng., 44, 839–849.CrossRefGoogle Scholar
  82. Semenov, A.S., 1980. Elektrorazvedka metodom estestvennogo elektricheskogo polia (Electrical proself-potential ecting with the natural electric field method, 2nd edn., In Russian), Nedra, Leningrad, p. 445.Google Scholar
  83. Sen, P.N., 1991. Correspondence between membrane potential and conductivity, Geophysics, 56 (4), 461–471.CrossRefGoogle Scholar
  84. Sharma, P. S., 1997. Enviromental and Engineering Geophysics, Cambridge University Press, Cambridge, MA.Google Scholar
  85. Sill, W., 1983. Self-potential modeling from primary flows, Geophysics, 48, 76–86.CrossRefGoogle Scholar
  86. Sprunt, E.S., T.B. Mercer, and N.F. Djabbarah, 1994. Streaming potential from multiphase flow. Geophysics, 59, 707–711.CrossRefGoogle Scholar
  87. Steeples, D.W., 2001. Engineering and environmental geophysics at the millennium, Geophysics, 66, 31–35.CrossRefGoogle Scholar
  88. Stoll, J., J. Bigalke, and E.W. Grabner, 1995. Electrochemical modelling of self-potential anomalies, Sur. Geophys., 16, 107–120.CrossRefGoogle Scholar
  89. Thony, J.L., P. Morat, G. Vachaud, and J.L. Le Mouël, 1997. Field characterization of the relationship between electrical potential gradients and soil water flux. Comptes Rendus De L’Académie Des Sciences Série II, Fascicule a, Sciences de la Terre et des Planètes, Vol. 325, pp. 317–321.Google Scholar
  90. Timm, F., and P. Möller, 2001. The relation between electric and redox potential: An evidence from laboratory to field experiments, J. Geochem. Explor., 72, 115–127.CrossRefGoogle Scholar
  91. Titov, K., A. Revil, P. Konasovsky, S. Straface, and S. Troisi, 2005. Numerical modeling of self-potential signals associated with a pumping test experiment, Geophys. J. Int., 162, 641–650.CrossRefGoogle Scholar
  92. Titov, K., Y. Ilyin, P. Konosavski, and A. Levitski, 2002. Electrokinetic self-potential ontaneous polarization in porous media: petrophysics and numerical modelling, J. Hydrol., 267, 207–216.CrossRefGoogle Scholar
  93. Vachaud, G., C. Dancette, M. Sonko, and J.L. Thony, 1978. Méthodes de caractérisation hydriodynamique in situ d’un sol non-saturé. Application à deux types de sols du Sénégal en vue de la détermination du bilan hydrique. Ann. Agron., 29, 1–36.Google Scholar
  94. Vichabian, Y., and F.D. Morgan, 2002. Self potentials in cave detection, The Leading Edge, September, pp. 866–871.Google Scholar
  95. Vichabian, Y., P. Reppert, and F.D. Morgan, 1999. Self-Potential Mapping of Contaminants. In Proceedings of the symposium on the application of Geophysics to Engineering and Environmental Problems, pp. 14–18.Google Scholar
  96. Weigel, M., 1989. Self-potential surveys on waste dumps, in Theory and Practice in Detection of subsurface Flow Phenomena, Lecture Notes in Earth Sciences, vol. 27, G.-P. Merkler et al. (Eds.), Detection of Subsurface Flow Phenomena, Springer, Heidelberg, Germany, pp. 109–120.Google Scholar
  97. Xu, X.L., B. Xu, and B. He, 2003. An alternative subspace approach to EEG dipole source localization, Phys. Med. Biol., 49, 327–343.CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • A. Revil
  • K. Titov
  • C. Doussan
  • V. Lapenna

There are no affiliations available

Personalised recommendations