Skip to main content

HYDROGEOPHYSICAL PARAMETER ESTIMATION APPROACHES FOR FIELD SCALE CHARACTERIZATION

  • Conference paper

Part of the book series: NATO Science Series ((NAIV,volume 71))

Abstract

The potential benefits of including geophysical data in hydrogeological site characterization have been stated numerous times (e.g. Ezzedine et al., 1999; Hubbard et al., 1999; Chen et al., 2001; Hubbard and Rubin, 2005). The principle reason for the growing interest in using geophysical methods in hydrogeological studies is that geophysics may provide spatially distributed models of physical properties in regions that are difficult to sample using conventional hydrological wellbore methods (e.g. Butler, 2005). The geophysical models often reveal more details compared with hydrogeological models derived from hydrogeological data, such as pump tests and observations of hydraulic heads. Furthermore, geophysical methods are less invasive compared with hydrogeological methods and they are comparatively cheap. Therefore, geophysical surveys can improve hydrogeological characterization if we could relate the geophysical and hydrogeological properties in an appropriate way. The added value of including geophysics in hydrogeological characterization has become increasingly accepted and several published case studies clearly show the worth of including geophysics for different applications and data types (e.g. see reviews by Hyndman and Tronicke, 2005; Goldman et al., 2005; Daniels et al., 2005). However, the success of a given hydrogeophysical case-study is dependent on many different factors and it is often difficult to develop an opinion a priori about the applicability of a method at another site or for another application. Here, we discuss some of the choices that need to be considered in a characterization effort and point out similarities and fundamental differences between different hydrogeophysical parameter estimation approaches presented in the literature.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alharthi, A., and J. Lange, 1987. Soil water saturation: Dielectric determination, Water Resour. Res., 23 (4), 591–595.

    Google Scholar 

  • Alumbaugh, D., P. Chang, L. Paprocki, J. Brainard, R.J. Glass, and C.A. Rautman, 2002. Estimating moisture contents in the vadose zone using cross-borehole ground penetrating radar: A study of accuracy and repeatability, Water Resour. Res., 38 (12), 1309.

    Article  Google Scholar 

  • Annan, A.P., 2005. GPR methods for hydrogeological studies, in Hydrogeophysics, edited by Y. Rubin and S.S. Hubbard, Springer, The Netherlands, pp. 185–214.

    Google Scholar 

  • Archie, G.E., 1942. The electrical resistivity log as an aid in determining some reservoir characteristics, Trans. AIME, 146, 54–62.

    Google Scholar 

  • Auken, A., and A.V. Christiansen, 2004. Layered and laterally constrained 2D inversion of resistivity data, Geophysics, 69 (3), 752–761.

    Article  Google Scholar 

  • Binley, A., P. Winship, R. Middleton, M. Pokar, and J. West, 2001. High-resolution characterization of vadose zone dynamics using cross-borehole radar, Water Resour. Res., 37 (11), 2639–2652.

    Article  Google Scholar 

  • Binley, A., P. Winship, L.J. West, M. Pokar, and R. Middleton, 2002. Seasonal variation of moisture content in unsaturated sandstone inferred from borehole radar and resistivity profiles, J. Hydrol., 267 (3–4), 160–172.

    Article  Google Scholar 

  • Butler, J.J., Jr., 2005. Hydrogeological methods for estimation of spatial variations in hydraulic conductivity, in Hydrogeophysics, edited by Y. Rubin and S.S. Hubbard, Springer, The Netherlands, pp. 23–58.

    Google Scholar 

  • Carrera, J., and S.P. Neuman, 1986a. Estimation of aquifer properties under transient and steady state conditions, 1, Maximum likelihood method incorporating prior information, Water Resour. Res., 22 (2), 199–210.

    Google Scholar 

  • Carrera, J., and S.P. Neuman, 1986b. Estimation of aquifer properties under transient and steady state conditions, 2, Uniqueness, stability and steady state conditions, 2, Water Resour. Res., 22 (2), 211–227.

    Google Scholar 

  • Carrera, J., and S.P. Neuman, 1986c. Estimation of aquifer properties under transient and steady state conditions, 3, Application to synthetic and field data, Water Resour. Res., 22 (2), 228–242.

    Google Scholar 

  • Caruthers, R.M., and I.F. Smith, 1992. The use of ground electrical survey methods for siting water-supply boreholes in shallow crystalline basement terrains, in Hydrogeology of Crystalline Basement Aquifers in Africa, edited by E.P. Wright and W.G. Burgess, Geological Society Special Publication No. 66, pp. 203–220.

    Google Scholar 

  • Cassiani, G., G. Bohm, A. Vesnaver, and R. Nicolich, 1998. A geostatistical framework for incorporating seismic tomography auxiliary data into hydraulic conductivity, J. Hydrol., 206 (1–2), 58–74.

    Article  Google Scholar 

  • Cassiani G., and M.A. Medina, 1997. Incorporating auxiliary geophysical data into ground-water estimation, Ground Water, 35 (12), 79–91.

    Article  Google Scholar 

  • Chen, J., S. Hubbard, and Y. Rubin, 2001. Estimating the hydraulic conductivity at the South Oyster Site from geophysical tomographic data using Bayesian techniques based on the normal linear regression model, Water Resour. Res., 37 (6), 1603–1613.

    Article  Google Scholar 

  • Chen, J., and Y. Rubin, 2003. An effective Bayesian model for lithofacies estimation using geophysical data, Water Resour. Res., 39 (5), 1118, doi: 10.1029/2002WR001666.

    Article  Google Scholar 

  • Chen, J., S. Hubbard, M. Fienen, T. Mehlhorn, and D. Watson, 2003. Estimation of hydrogeological zonation at the NABIR Field Research Center using high-resolution geophysical data and Markov Chain Monte Carlo methods, EOS Transaction, 84 (46).

    Google Scholar 

  • Chen, J., S. Hubbard, Y. Rubin, C. Murray, E. Roden, and E. Majer, 2004. Geochemical characterization using geophysical data and Markov Chain Monte Carlo methods: A case study at the South Oyster Bacterial Transport Site in Virginia, Water Resour. Res., 40 (12), W12412, doi: 10.1029/2003WR002883.

    Article  Google Scholar 

  • Clifton, P., and S. Neuman, 1982. Effects of kriging and inverse modeling on conditional simulation of the Avra Valley aquifer in Southern Arizona, Water Resour. Res., 18 (4), 1215–1234.

    Google Scholar 

  • Cohen, A.J.B., 1995. Hydrogeological characterization of fractured rock formations: A guide for groundwater remediation, Technical Report, Lawrence Berkeley National Laboratory, Berkeley, Californa.

    Google Scholar 

  • Constable, S.C., R.L. Parker, and C.G. Constable, 1987. Occam’s inversion: A practical algorithm for generating smooth models from EM sounding data, Geophysics, 52 (3), 289–300.

    Article  Google Scholar 

  • Dagan, G., 1985. Stochastic modeling of groundwater flow by unconditional and conditional probabilities: The inverse problem, Water Resour. Res., 21 (1), 65–72.

    Google Scholar 

  • Daley, T.M., E.L., Majer, and J.E. Peterson, 2003. Crosswell seismic imaging in a contaminated basalt aquifer, Geophysics, 69 (1), 16–24.

    Article  Google Scholar 

  • Daniels, J.J., B. Allred, A. Binley, D. LaBrecque, and D. Alumbaugh, 2005. Hydrogeophysical case studies in the vadose zone, in Hydrogeophysics, edited by Y. Rubin and S.S. Hubbard, Springer, The Netherlands, pp. 413–440.

    Google Scholar 

  • Day-Lewis, F.D., J.W. Lane, Jr., J.M. Harris, and S.M. Gorelick, 2003. Time-lapse imaging of saline tracer tests using cross-borehole radar tomography, Water Resour. Res., 39 (10), doi: 10.1029/2002WR001722.

    Google Scholar 

  • Day-Lewis, F.D., and J.W. Lane, Jr., 2004. Assessing the resolution-dependent utility of tomograms for geostatistics, Geophys. Res. Lett., 31 (7), L07503, doi: 10.1029/2004GL019617.

    Article  Google Scholar 

  • Davis, J.L., and A.P. Annan, 1989. Ground-penetrating radar for high-resolution mapping of soil and rock stratigraphy, Geophys. Prosp., 37 (5), 531–551.

    Article  Google Scholar 

  • Deutsch, C. and A. Journel, 1992. GSLIB: Geostatistical Software Library and User’s Guide, Oxford University Press.

    Google Scholar 

  • Deutsch, C.V., 2002. Geostatistical Reservoir Modeling, Oxford University Press.

    Google Scholar 

  • Doyen, P.M., 1988. Porosity from seismic data: A geostatistical approach, Geophysics, 53 (10), 1263–1275.

    Article  Google Scholar 

  • Ellefsen, K.J., P.A. Hsieh, A.M. Shapiro, 2002. Crosswell seismic investigation of hydraulically conductive, fractured bedrock near Mirror Lake, New Hampshire, J. Appl. Geophys., 50 (3), 299–317.

    Article  Google Scholar 

  • Ellis, R.G., and D.W. Oldenburg, 1994. Applied geophysical inversion, Geophys. J. Int., 116 (1), 5–11.

    Article  Google Scholar 

  • Eppstein, M.J., and D.E. Dougherty, 1998. Efficient three-dimensional data inversion: Soil characterization and moisture monitoring from cross-well ground-penetrating radar at a Vermont test site, Water Resour. Res,. 34 (8), 1889–1900.

    Article  Google Scholar 

  • Ezzedine, S., Y. Rubin, and J. Chen, 1999. Bayesian method for hydrogeological site characterization using borehole and geophysical survey data: Theory and application to the Lawrence Livermore National Laboratory Superfund site, Water Resour. Res., 35 (9), 2671–2683.

    Article  Google Scholar 

  • Finsterle, S., and J. Najita, 1998. Robust estimation of hydrogeologic model parameters, Water Resour. Res., 34 (11), 2939–2947.

    Article  Google Scholar 

  • Fisher, E., G.A. McMechan, and A.P. Annan, 1992. Acquisition and processing of wide-aperture ground-penetrating radar data, Geophysics, 57 (3), 495–503.

    Article  Google Scholar 

  • Gallardo, L.A., and M.A. Meju, 2004. Joint two-dimensional DC resistivity and seismic travel time inversion with cross-gradient constraints, J. Geophys. Res., 109 (B3), B03311, doi: 10.1029/2003JB002716.

    Article  Google Scholar 

  • Gee, G.W., and A.L. Ward, 2001. Vadose Zone Transport Field Study, Status Report, PNNL-13679, Pacific Northwest National Laboratory, Richland, WA.

    Google Scholar 

  • Gloaguen, E., M. Chouteau, D. Marcotte, and R. Chapuis, 2001. Estimation of hydraulic conductivity of an unconfined aquifer using cokriging of GPR and hydrostratigraphic data, J. Appl. Geophys., 47 (2), 135–152.

    Article  Google Scholar 

  • Goldman, M., H. Gvirtzman, M.A. Meju, and V. Shtivelman, 2005. Hydrogeophysical case studies at the regional scale, in Hydrogeophysics, edited by Y. Rubin and S.S. Hubbard, Springer, The Netherlands, pp. 361–390.

    Google Scholar 

  • Gómez-Hernández, J.J., 2005. Geostatistics, in Hydrogeophysics, edited by Y. Rubin and S.S. Hubbard, Springer, The Netherlands, pp. 59–86.

    Chapter  Google Scholar 

  • Greaves, R.J., D.P. Lesmes, J.M. Lee, and M.N. Toksoz, 1996. Velocity variations and water content estimated from multi-offset, ground-penetrating radar, Geophysics, 61 (3), 683–695.

    Article  Google Scholar 

  • Grote, K., S.S. Hubbard, and Y. Rubin, 2002. GPR monitoring of volumetric water content in soils applied to highway construction and maintenance, Leading Edge, 21 (5), 482–485.

    Article  Google Scholar 

  • Grote, K., S. Hubbard, and Y. Rubin, 2003. Field-scale estimation of volumetric water content using GPR groundwave techniques, Water Resour. Res., 39, 1321, doi: 10.1029/2003WR002045.

    Article  Google Scholar 

  • Hill, M.C., 1992. A computer program (MODFLOWP) for estimating parameters of a transient three-dimensional, ground-water flow model using nonlinear regression, U.S. Geological Survey Open-File Report 91-484, 358 pp.

    Google Scholar 

  • Hoeksema, R.J., and P.K. Kitanidis, 1984. An application of the geostatistical approach to the inverse problem in two-dimensional groundwater modeling, Water Resour. Res., 20, 1003–1020.

    Article  Google Scholar 

  • Hubbard, S.S., J.E. Peterson Jr, E.L. Majer, P.T. Zawislanski, K.H. Williams, J. Roberts, and F. Wobber, 1997. Estimation of permeable pathways and water content using tomographic radar data, Leading Edge, 16 (11), 1623–1630.

    Article  Google Scholar 

  • Hubbard, S.S., Y. Rubin, and E. Majer, 1999. Spatial correlation structure estimation using geophysical and hydrogeological data, Water Resour. Res., 35 (6), 1809–1825.

    Article  Google Scholar 

  • Hubbard, S.S., J. Chen, J. Peterson, E.L. Majer, K.H. Williams, D.J. Swift, B. Mailloux, and Y. Rubin, 2001. Hydrogeological characterization of the South Oyster Bacterial Transport Site using geophysical data, Water Resour. Res., 37 (10), 2431–2456.

    Article  Google Scholar 

  • Hubbard, S., I. Lunt, K. Grote, and Y. Rubin, 2006. Vineyard soil water content: Mapping small scale variability using ground penetrating radar, in Geoscience Canada Geology and Wine series, edited by R.W. Macqueen and L.D. Meinert, in press.

    Google Scholar 

  • Hubbard, S.S. and Y. Rubin, 2005. Introduction to Hydrogeophysics, in Hydrogeophysics, edited by Y. Rubin and S.S. Hubbard, Springer, The Netherlands, pp. 3–21.

    Google Scholar 

  • Huber, P., 2003. Robust Statistics, Wiley.

    Google Scholar 

  • Huisman, J.A., S. Hubbard, D. Redman, P. Annan, Monitoring soil water content with ground-penetrating radar: A review, Vadose Zone J., 2, 476–491.

    Google Scholar 

  • Hyndman, D.W., J.M. Harris, and S.M. Gorelick, 1994. Coupled seismic and tracer test inversion for aquifer property characterization, Water Resour. Res., 30 (7), 1965–1977.

    Article  Google Scholar 

  • Hyndman, D.W., and S.M. Gorelick, 1996. Estimating lithologic and transport properties in three dimensions using seismic and tracer data: The Kesterson aquifer, Water Resour. Res., 32 (9), 2659–2670.

    Article  Google Scholar 

  • Hyndman, D.W., J.M. Harris, and S.M. Gorelick, 2000. Inferring the relation between seismic slowness and hydraulic conductivity in heterogeneous aquifers, Water Resour. Res., 36 (8), 2121–2132.

    Article  Google Scholar 

  • Hyndman, D., and J. Tronicke, 2005. Hydrogeophysical case studies at the local scale: The saturated zone, in Hydrogeophysics, edited by Y. Rubin and S.S. Hubbard, Springer, The Netherlands, pp. 391–412.

    Google Scholar 

  • Jackson, D.D., 1979. The use of a priori data to resolve non-uniqueness in linear inversion, Geophys. J. R. Astron. Soc., 57, 137–157.

    Google Scholar 

  • Journel, A.G., and P. Kyriakis, 2004. Evaluation of Mineral Reserves: A Simulation Approach, Oxford University Press.

    Google Scholar 

  • Kitanidis, P.K., 1999. Generalized covariance functions associated with the Laplace equation and their use in interpolation and inverse problems, Water Resour. Res., 35 (5), 1361–1367.

    Article  Google Scholar 

  • Kowalsky, M.B., S. Finsterle, and Y. Rubin, 2004. Estimating flow parameter distributions using ground-penetrating radar and hydrological measurements during transient flow in the vadose zone, Adv. Water Resour., 27 (6), 583–599.

    Article  Google Scholar 

  • Kowalsky, M.B., S. Finsterle, J. Peterson, S. Hubbard, Y. Rubin, E. Majer, A. Ward, and G. Gee, 2005. Estimation of field-scale soil hydraulic and dielectric parameters through joint inversion of GPR and hydrological data, Water Resour. Res., 41 (11), W11425, doi: 10.1029/2005WR004237.

    Article  Google Scholar 

  • Lesch, S.M., D.J. Strauss, and J.D. Rhoades, 1995. Spatial prediction of soil-salinity using electromagnetic induction techniques. 1. Statistical prediction models – a comparison of multiple linear-regression and cokriging, Water Resour. Res., 31 (2), 373–386.

    Article  Google Scholar 

  • Lesmes, D., and S. Friedman, 2005. Relationships between the electrical and hydrogeological properties of soils and rocks, in Hydrogeophysics, edited by Y. Rubin and S.S. Hubbard, Springer, The Netherlands, pp. 87–128.

    Google Scholar 

  • Linde, N., S. Finsterle, and S. Hubbard, 2006. Inversion of tracer test data using tomographic constraints, Water Resour. Res., 42, W04410, doi: 10.1029/2004WR003806.

    Article  Google Scholar 

  • Loke, M.H., 1997. Rapid 2D resistivity inversion using the least-squares method, RES2DINV Program manual, Penang, Malaysia.

    Google Scholar 

  • Lunt, I., S. Hubbard and Y. Rubin, 2004. Soil moisture content estimation using ground penetrating radar reflection data, J. Hydrol., doi: 10.1016/j.jhydrol.2004.10.014.

    Google Scholar 

  • Malinverno, A. and V.A. Briggs, 2004. Expanded uncertainty quantification in inverse problems: hierarchical Bayes and empirical Bayes, Geophysics, 69 (4), 1005–1016.

    Article  Google Scholar 

  • Majer, E.L., L.R. Myer, J.E. Peterson, K. Karasaki, J.C.S. Long, S.J. Martel, P. Blumling, and S. Vomvoris, 1990. Joint seismic, hydrogeological, and geomechanical investigations of a fractured zone in the Grimsel rock laboratory, Switzerland, Technical Report, Lawrence Berkeley National Laboratory, Berkeley, California.

    Google Scholar 

  • Majer, E.L., J.E. Peterson, T. Daley, B. Kaelin, L. Myer, J. Queen, P. D’Onfro, and W. Rizer, 1997. Fracture detection using crosswell and single well surveys, Geophysics, 62 (2), 495–504.

    Article  Google Scholar 

  • Majer, E.L., K.H. Williams, J.E. Peterson, and T.M. Daley, 2002. High resolution imaging of vadose zone transport using crosswell radar and seismic methods, Lawrence Berkeley National Laboratory Report LBNL 49022.

    Google Scholar 

  • Maurer, H., K. Holliger, and D.E. Boerner, 1998. Stochastic regularization: Smoothness or similarity? Geophys. Res. Lett., 25 (15), 2889–2892.

    Article  Google Scholar 

  • Mavko, G., T. Mukerji, and J. Dvorkin, 1998. The Rock Physics Handbook, Cambridge University Press.

    Google Scholar 

  • McKenna, S.A., and E.P. Poeter, 1995. Field example of data fusion in site characterization, Water Resour. Res., 31 (12), 3229–3240.

    Article  Google Scholar 

  • McLaughlin, D., and L.R. Townley, 1996. A reassessment of the groundwater inverse problem, Water Resour. Res., 32 (5), 1131–1161.

    Article  Google Scholar 

  • Meju, M.A., 1996. Joint inversion of TEM and distorted MT soundings: Some effective practical considerations, Geophysics, 61 (1), 56–65.

    Article  Google Scholar 

  • Menke, W., 1984. Geophysical Data Analysis – Discrete Inverse Theory, Academic Press, New York.

    Google Scholar 

  • Mosegaard, K., and A. Tarantola, 1995. Monte Carlo sampling of solutions to inverse problems, J. Geophys. Res., 100 (B7), 12,431–12,447.

    Article  Google Scholar 

  • Moysey, S., and R.J. Knight, 2004. Modeling the field-scale relationship between dielectric constant and water content in heterogeneous systems, Water Resour. Res., 40 (3), 3510, doi: 10.1029/2003WRR002589.

    Article  Google Scholar 

  • Moysey, S., K. Singha, and R. Knight, 2005. A framework for inferring field-scale rock physics relationships through numerical simulation, Geophys. Res. Lett., 32, L08304, doi: 10.1029/2004GL022152.

    Article  Google Scholar 

  • Oldenburg, D.W., and Y. Li, 1999. Estimating the depth of investigation in dc resistivity and IP surveys, Geophysics, 64 (2), 403–416.

    Article  Google Scholar 

  • van Overmeeren, R.A., S.V. Sariowan, and J.C. Gehrels, 1997. Ground penetrating radar for determining volumetric soil water content: Results of comparative measurements at two sites. J. Hydrol. 197 (1–4), 316–338.

    Article  Google Scholar 

  • Parker, R.L., 1994. Geophysical Inverse Theory, Princeton University Press, Princeton.

    Google Scholar 

  • Parks, K.P., and L.R. Bentley, 1996. Enhancing data worth of EM survey in site assessment by cokriging, Ground Water, 34 (4), 597–604.

    Article  Google Scholar 

  • Peterson, J.E., Jr., 2001. Pre-inversion corrections and analysis of radar tomographic data. JEEG, 6 (1), 1–18.

    Google Scholar 

  • Poeter, E.P., and M.C. Hill, 1998. Documentation of UCODE, a computer code for universal inverse modeling, U.S. Geological Survey Water Resources Investigations Report 98-4080, 116 pp.

    Google Scholar 

  • Prasad, M., 2003. Velocity-permeability relations within hydraulic units, Geophysics, 68 (1), 108–117.

    Article  Google Scholar 

  • Press, S.J., 1989. Bayesian Statistics: Principles, Models, and Applications, Wiley.

    Google Scholar 

  • Pride, S.R., 2005. Relationships between seismic and hydrological properties, in Hydrogeophysics, edited by Y. Rubin and S.S. Hubbard, Springer, The Netherlands, pp. 253–290.

    Google Scholar 

  • Purvance, D.T., and R. Andricevic, 2000a. On the electrical-hydraulic conductivity correlation in aquifers, Water Resour. Res., 36 (10), 2905–2913.

    Article  Google Scholar 

  • Purvance, D.T., and R. Andricevic, 2000b. Geoelectrical characterization of the hydraulic conductivity field and its spatial structure at variable scales, Water Resour. Res., 36 (10), 2915–2924.

    Article  Google Scholar 

  • Roth, K.R., R. Schulin, H. Fluhler, and W. Attinger, 1990. Calibration of time domain reflectometry for water content measurement using a composite dielectric approach, Water Resour. Res., 26 (10), 2267–2273.

    Article  Google Scholar 

  • Rubin, Y., and S. Hubbard, 2005. Stochastic forward and inverse modeling: The “hydrogeophysical” challenge, in Hydrogeophysics, edited by Y. Rubin and S.S. Hubbard, Springer, The Netherlands, pp. 487–512.

    Google Scholar 

  • Scales, J.A., and L. Tenorio, 2001. Prior information and uncertainty in inverse problems, Geophysics, 66 (2), 389–397, 2001.

    Article  Google Scholar 

  • Siripunvaraporn, W., and G. Egbert, 2000. An efficient data-subspace inversion method for 2-D magnetotelluric data, Geophysics, 65 (3), 791–803.

    Article  Google Scholar 

  • Sivia, D.S., 1996, Data Analysis: A Bayesian Tutorial, Clarendon Press, Oxford.

    Google Scholar 

  • Tarantola, A., 1987. Inverse Problem Theory, Elsevier, The Netherlands.

    Google Scholar 

  • Tinga, W.R., W.A.G. Voss, and D.F. Blossey, 1973. Generalized approach to multiphase mixing theory, J. Appl. Phys., 44 (9), 3897–3902.

    Article  Google Scholar 

  • Tikhonov, A.N., and V.Y. Arsenin, 1977. Solutions of Ill-Posed Problems, Halsted Press/Wiley. Cited by McLaughlin and Townley (1996).

    Google Scholar 

  • Tillard, S., and J.-C. Dubois, 1995. Analysis of GPR data: Wave propagation velocity determination. J. Appl. Geophys, 33 (1–3), 77–91.

    Article  Google Scholar 

  • Ward, A.L., T.G. Caldwell, and G.W. Gee, 2000. Vadose zone transport field study: Soil water content distribution by neutron moderation, PNNL-13795, Pacific Northwest National Laboratory, Richland, WA.

    Google Scholar 

  • Yang, C.H., L.T. Tong, and C.F. Huang, 1999. Combined application of dc and TEM to sea-water intrusion mapping, Geophysics, 64 (2), 417–425.

    Article  Google Scholar 

  • Yeh, T.-C. J., and J. Simunek, 2002. Stochastic fusion of information for characterization and monitoring the vadose zone, Vadose Zone J., 1, 207–221.

    Article  Google Scholar 

  • Yeh, T.-C. J., S. Liu, R.J. Glass, K. Barker, J.R. Brainard, D.L. Alumbaught, and D. LaBrecque, 2002. A geostatistically based inverse model for electrical resistivity surveys and its application to vadose zone hydrology, Water Resour. Res., 38 (12), 1278.

    Article  Google Scholar 

  • Zhang, Z.F., A.L. Ward, and G.W. Gee, 2004. A combined parameter scaling and inverse technique to upscale the unsaturated hydraulic parameters for heterogeneous soils, Water Resour. Res., 40 (8), W08306, doi: 10.1.1029/2003WR002925.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Linde, N., Chen, J., Kowalsky, M.B., Hubbard, S. (2006). HYDROGEOPHYSICAL PARAMETER ESTIMATION APPROACHES FOR FIELD SCALE CHARACTERIZATION. In: Vereecken, H., Binley, A., Cassiani, G., Revil, A., Titov, K. (eds) Applied Hydrogeophysics. NATO Science Series, vol 71. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4912-5_2

Download citation

Publish with us

Policies and ethics