Skip to main content

Part of the book series: International Studies in Population ((ISIP,volume 4))

  • 765 Accesses

From our limited knowledge of comparative mammalian longevity four generalizations may be made: (1) overall, larger mammal species live longer than smaller ones; (2) certain taxonomic groups such as bats and marsupials are exceptions to this body size-longevity relationship; (3) within species, there is suggestive evidence that smaller individuals are generally longer-lived than larger individuals; and (4) in most mammal species, females are the longer-lived sex, although numerous exceptions can be found. In the unique data set represented by the NIA/NCTR Biomarkers of Ageing study in which four mouse and three rat genotypes were reared under identical conditions, it is evident that male mice typically live longer than female mice, while the reverse is true for rats. In addition, although there is a large unexplained variation in longevity, even among genetically identical animals in identical environments, there is no evidence from the enhanced longevity of caloric restriction of a longevity “wall” beyond which mice and rats cannot live.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

 

  • Austad, S. N., and Fischer, K. E. (1991) “Mammalian aging, metabolism, and ecology: Evidence from the bats and marsupials”, Journals of Gerontology, 46:B47-B53.

    Google Scholar 

  • Austad, S. N., and Holmes, D. J. (1998) “Evolutionary approaches to probing ageing mechanisms”. In: Yu, B. P. (ed.), Methods in Aging Research, Boca Raton, FL: CRC Press, pp. 437-452.

    Google Scholar 

  • Brooks, A., Lithgow, G. J., and Johnson, T. E. (1994) “Mortality rates in a genetically heterogeneous population of Caenorhabditis elegans”, Science, 263:668-671.

    Article  Google Scholar 

  • Campisi, J. (2001) “From cells to organisms: Can we learn about aging from cells in culture?” Experimental Gerontology, 36(4-6):607-618.

    Article  Google Scholar 

  • Carey, J. R., and Judge, D. S. (2000) Longevity Records: Life Spans of Mammals, Birds, Amphibians, Reptiles, and Fish. Odense Monographs on Population Aging. Odense, DK: Odense University Press, pp. 241.

    Google Scholar 

  • Carey, J. R., Liedo, P., Orozco, D., and Vaupel, J. W. (1992) “Slowing of mortality rates at older ages in large medfly cohorts”, Science, 258:457-461.

    Article  Google Scholar 

  • Charlesworth, B. (1994) Evolution in Age-Structured Environments, 2nd edn., Cambridge, UK: Cambridge University Press.

    Book  Google Scholar 

  • De Haan, G., Gelman, R., Watson, A., Yunis, E., and Van Zant, G. (1998) “A putative gene causes variability in lifespan among genotypically identical mice”, Nature Genetics, 19:114-116.

    Article  Google Scholar 

  • Faber, J. F. (1982) “Life tables for the United States: 1900-2050”. U.S. Department of Health and Human Services, Social Security Administration. SSA Pub. No. 11-11534.

    Google Scholar 

  • Finch, C. E., and Kirkwood, T. B. L. (2000) Chance, Development, and Aging. Oxford, UK: Oxford University Press.

    Google Scholar 

  • Finch, C. E., and Austad, S. N. (eds.) (2001) “Symposium on slowly-aging organisms”, Experimental Gerontology, special issue.

    Google Scholar 

  • Fogel, R. W., and Costa, D. L. (1997) “A theory of technophysio evolution, with some implications for forecasting population, health care costs, and pension costs”, Demography, 34(1):49-66.

    Article  Google Scholar 

  • Fries, J. F. (1980) “Aging, natural death, and the compression of morbidity”, New England Journal of Medicine, 303:130-135.

    Google Scholar 

  • Hayflick, L. (2000) “The future of ageing”, Nature, 408:267-269.

    Article  Google Scholar 

  • Holmes, D. J., and Austad, S. N. (1995) “Birds as animal models for the comparative biology of aging: A prospectus”, Journals of Gerontology: Biological Sciences, 50A:B59-B66.

    Google Scholar 

  • Johnson, T. E. (1987) “Aging can be genetically dissected into component processes using long-lived lines of Caenorhabditis elegans”, Proceedings of the National Academy of Sciences, USA, 84:3777-3781.

    Article  Google Scholar 

  • Johnson, T. E., and Wood, W. B. (1982) “Genetic analysis of life-span in Caenorhabditis elegans”, Proceedings of the National Academy of Sciences, USA, 79:6603-6607.

    Article  Google Scholar 

  • Jones, M.L. (1982) “Longevity of captive mammals”, Zoologische Garten, 52:113-128.

    Google Scholar 

  • Kapahi, P., Boulton, M. E., and Kirkwood, T. B. L. (1999) “Positive correlation between mammalian life span and cellular resistance to stress”, Free Radicals in Biology and Medicine, 26:495-500.

    Article  Google Scholar 

  • Li, Y., Deeb, B., Pendergrass, W., and Wolf, N. (1996) “Cellular proliferative capacity and life span in small and large dogs”, Journals of Gerontology: Biological Sciences, 51A:B403-B408.

    Google Scholar 

  • Martin, G. M., Austad, S. N., and Johnson, T. E. (1996) “Genetic analysis of ageing: Role of oxidative damage and environmental stresses”, Nature Genetics, 13:25-34.

    Article  Google Scholar 

  • McGue, M., Vaupel, J. W., Holm, N., and Harvald, B. (1993) “Longevity is moderately heritable in a sample of Danish twins born 1870-1880”. Journals of Gerontology: Biological Sciences, 48:B237-B244.

    Google Scholar 

  • Miller, R. A. (2001) “Genetics of increased longevity and retarded aging in mice”. In: Masoro, E. J., Austad, S. N. (eds.), Handbook of the Biology of Aging, 5th edn. San Diego: Academic Press, pp. 369-395.

    Google Scholar 

  • Nowak, R. M. (1999) Walker’s Mammals of the World, 6th edn. Baltimore: Johns Hopkins University Press.

    Google Scholar 

  • Packer, C., Herbst, L., Pusey, A. E., Bygott, D., Hanby, J. P., Cairns, S. J., and Mulder, M. B. (1988) “Reproductive success of lions”. In: Clutton-Brock, T. H. (ed.), Reproductive Success. Chicago: University of Chicago Press, pp. 363-383.

    Google Scholar 

  • Phelan, J. P., and Austad, S. N. (1994) “Selecting animal models of human aging: Inbred strains often exhibit less biological uniformity that F1 hybrids”, Journals of Gerontology, 49:B1-B11.

    Google Scholar 

  • Promislow, D. E. L. (1990) “Senescence in natural populations of mammals: A comparative study”, Evolution, 45:1869-1887.

    Article  Google Scholar 

  • Rose, M. R. (1991). Evolutionary Biology of Aging. Oxford, UK: Oxford University Press.

    Google Scholar 

  • Samaras, T. T., and Elrick, H. (1999) “Height, body size, and longevity”, Acta Medica Okayama, 53:149-169.

    Google Scholar 

  • Smith, D. W. E. (1993) Human Longevity. Oxford, UK: Oxford University Press.

    Google Scholar 

  • Sohal, R. S. (1986) “The rate of living theory—a contemporary interpretation”. In: Collatz, K.-G., Sohal, R. S. (eds.), Insect Aging. Berlin: Springer, pp. 23-44.

    Google Scholar 

  • Sohal, R. S., and Weindruch, R. (1996) “Oxidative stress, caloric restriction, and aging”, Science, 273:59-63.

    Article  Google Scholar 

  • Sprott, R. L. (1999) “Biomarkers of Aging”, Journals of Gerontology: Biological Sciences, 54A:B464-B465.

    Google Scholar 

  • Tatar, M., Bartke, A., and Antebi, A. (2003) “The endocrine regulation of aging by insulin-like signals”, Science, 299(5611):1346-1351.

    Article  Google Scholar 

  • Turturro, A., Witt, W. W., Lewis, S., Hass, B. S., Lipman, R. D., and Hart, R. W. (1999) “Growth curves and survival characteristics of the animals used in the biomarkers of aging program”, Journals of Gerontology: Biological Sciences, 54A:B492-B501.

    Google Scholar 

  • Wang, H. D., Kazemi-Esfarjani, P., and Benzer, S. (2004) “Multiple-stress analysis for isolation of Drosophila longevity genes”, Proceedings of the National Academy of Science, USA, 101(34):12610-12615.

    Article  Google Scholar 

  • Wilkinson, G. S., and South, J. M. (2002) “Life history, ecology and longevity in bats”, Aging Cell, 1:124-131.

    Article  Google Scholar 

  • Wilmoth, J. R., and Horiuchi, S. (1999) “Rectangularization revisited: Variability of age at death within human populations”, Demography, 36:475-495.

    Article  Google Scholar 

  • Wolf, N. S., Penn, P. E., Fei, R.G., and Pendergrass, W. R. (1995) “Caloric restriction: Conservation of in vivo cellular replicative capacity accompanies life-span extension in mice”, Experimental Cell Research, 217:317-323.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Austad, S.N. (2007). Patterns in Mammalian Ageing: Demography and Evolution. In: Robine, JM., Crimmins, E.M., Horiuchi, S., Yi, Z. (eds) Human Longevity, Individual Life Duration, and the Growth of the Oldest-Old Population. International Studies in Population, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4848-7_2

Download citation

Publish with us

Policies and ethics