UV Capabilities to Probe the Formation of Planetary Systems: From the ISM to Planets

  • Ana I. Gómez de Castro
  • Alain Lecavelier
  • Miguel D’Avillez
  • Jeffrey L. Linsky
  • José Cernicharo


Planetary systems are angular momentum reservoirs generated during star formation. Solutions to three of the most important problems in contemporary astrophysics are needed to understand the entire process of planetary system formation:

The physics of the ISM. Stars form from dense molecular clouds that contain ∼30% of the total interstellar medium (ISM) mass. The structure, properties and lifetimes of molecular clouds are determined by the overall dynamics and evolution of a very complex system — the ISM. Understanding the physics of the ISM is of prime importance not only for Galactic but also for extragalactic and cosmological studies. Most of the ISM volume (∼65%) is filled with diffuse gas at temperatures between 3000 and 300 000 K, representing about 50% of the ISM mass.

The physics of accretion and outflow. Powerful outflows are known to regulate angular momentum transport during star formation, the so-called accretion—outflow engine. Elementary physical considerations show that, to be efficient, the acceleration region for the outflows must be located close to the star (within 1AU) where the gravitational field is strong. According to recent numerical simulations, this is also the region where terrestrial planets could form after 1 Myr. One should keep in mind that today the only evidence for life in the Universe comes from a planet located in this inner disk region (at 1AU) from its parent star. The temperature of the accretion—outflow engine is between 3000 and 107 K. After 1 Myr, during the classical T Tauri stage, extinction is small and the engine becomes naked and can be observed at ultraviolet wavelengths.

The physics of planet formation. Observations of volatiles released by dust, planetesimals and comets provide an extremely powerful tool for determining the relative abundances of the vaporizing species and for studying the photochemical and physical processes acting in the inner parts of young planetary systems. This region is illuminated by the strong UV radiation field produced by the star and the accretion—outflow engine. Absorption spectroscopy provides the most sensitive tool for determining the properties of the circumstellar gas as well as the characteristics of the atmospheres of the inner planets transiting the stellar disk. UV radiation also pumps the electronic transitions of the most abundant molecules (H2, CO, etc.) that are observed in the UV.

Here we argue that access to the UV spectral range is essential for making progress in this field, since the resonance lines of the most abundant atoms and ions at temperatures between 3000 and 300 000 K, together with the electronic transitions of the most abundant molecules (H2, CO, OH, CS, S2, CO+ 2 , C2,O2,O3, etc.) are at UV wavelengths. A powerful UV-optical instrument would provide an efficient mean for measuring the abundance of ozone in the atmosphere of the thousands of transiting planets expected to be detected by the next space missions (GAIA, Corot, Kepler, etc.). Thus, a follow-up UV mission would be optimal for identifying Earth-like candidates.

Key words

UV astronomy ISM Pre-main sequence stars Jets Winds Accretion disks Planets 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alencar, S.H.P., Johns-Krull, C.M., Basri, G.: Astrophys. J. 122, 3335 (2001)ADSGoogle Scholar
  2. Ardila, D.R., Basri, G., Walter, F.M., Valenti, J.A., Johns-Krull, C.M.: Astrophys. J. 566, 1100 (2002)CrossRefADSGoogle Scholar
  3. Avillez, M., Breitschwerdt, D.: A&A 425, 899 (2004)CrossRefADSGoogle Scholar
  4. Avillez, M., Breitschwerdt, D.: A&A 436, 585 (2005)CrossRefADSGoogle Scholar
  5. Bachiller, R.: Annu. Rev. Astron. Astrophys. 34, 111 (1996)CrossRefADSGoogle Scholar
  6. Benjamin, R., Shapiro, P.: In: E. Silver and S. Kahn (eds.), Ultraviolet and X-Ray Spectroscopy of Laboratory and Astrophysical Plasmas, Cambridge University Press, Cambridge, p. 280 (1993)Google Scholar
  7. Bertout, C., Basri, G., Bouvier, J.: Astrophys. J. 330, 350 (1988)CrossRefADSGoogle Scholar
  8. Breitschwerdt D., Schmutzler T.: A&A 347, 650 (1999)ADSGoogle Scholar
  9. Berghöfer, T.W., Breitschwerdt, D.: A&A 390, 299 (2002)CrossRefADSGoogle Scholar
  10. Bertin, P., Lallement, R., Ferlet, R., Vidal-Madjar, A.: J. Geophys. Res. 98(A9), 15193 (1993)ADSCrossRefGoogle Scholar
  11. Blondel, P.F.C., Talavera, A., Djie, H.R.E.T.A.: A&A 268, 624 (1993)ADSGoogle Scholar
  12. Boehm, T., Catala, C., Donati, J.-F., Welty, A., Baudrand, J., Butler, C.J., Carter, B., Collier-Cameron, A., Czarny, J., Foing, B., Ghosh, K., Hao, J., Houdebine, E., Huang, L., Jiang, S., Nefl, J.E., Rees, D., Semel, M., Simon, T., Talavera, A., Zhai, D., Zhao, F.: Astron. Astrophys. Suppl. 120, 431 (1996)CrossRefADSGoogle Scholar
  13. Boehm, K.-H., Buehrke, Th., Raga, A.C., Brugel, E.W., Witt, A.N., Mundt, R.: Astrophys. J. 316, 349 (1987)CrossRefADSGoogle Scholar
  14. Boehm-Vitense, E., Cardelli, J.A., Nemec, J.M., Boehm, K.H.: Astrophys. J. 262, 224 (1982)CrossRefADSGoogle Scholar
  15. Bouret, J.-C., Catala, C.: A&A 340, 163 (1998)ADSGoogle Scholar
  16. Bouret, J.-C., Catala, C.: A&A 359, 1011 (2000)ADSGoogle Scholar
  17. Bouret, J.-C., Catala, C., Simon, T.: A&A 328, 606 (1997)ADSGoogle Scholar
  18. Bouret, J.-C., Martin, C., deleuil, M., Simon, T., Catala, C.: A&A 410, 175 (2003)CrossRefADSGoogle Scholar
  19. Bouvier, J., Grankin, K.N., Alencar, S.H.P., Dougados, C., Fernández, M., Basri, G., Batalha, C., Guenther, E., Ibrahimov, M.A., Magakian, T.Y., Melnikov, S.Y., Pelrov, P.P., Rud, M.V., Zapatero Osorio, M.R.: A&A 409, 169 (2003)CrossRefADSGoogle Scholar
  20. Calvet, N., Basri, G., Kuhi, L.V.: Astrophys. J. 277, 725 (1984)CrossRefADSGoogle Scholar
  21. Catala, C.: A&SS 284, 53 (2003)ADSGoogle Scholar
  22. Catala, C., Kunasz, P.B.: A&A 174, 158 (1987)ADSGoogle Scholar
  23. Cernicharo, J.: Astrophys. J. 608, L41 (2004)CrossRefADSGoogle Scholar
  24. Charbonneau, D., Brown, T.M., Noyes, R.W., Gilliland, R.L.: Astrophys. J. 568, 377 (2002)CrossRefADSGoogle Scholar
  25. Clampin, M., Krist, J.E., Ardila, D.R., Golimowski, D.A., Hartig, G.F., Ford, H.C., Illingworth, G.D., Bartko, F., Benétez, N., Biakeslee, J.P., Bouwens, R.J., Broadhurst, T.J., Brown, R.A., Burrows, C.J., Cheng, E.S., Cross, N.J.G., Feldman, P.D., Franx, M., Gronwall, C., Infanle, L., Kimble, R.A., Lesser, M.P., Martel, A.R., Menanteau, F., Meurer, G.R., Miley, G.K., Postman, M., Rosati, P., Sirianni, M., Sparks, W.B., Tran, H.D., Tsvetanov, Z.I., White, R.L., Zheng, W.: Astron. J. 126, 385 (2003)CrossRefADSGoogle Scholar
  26. Curiel, S., Raymond, J.C., Wolfire, M., Hartigan, P., Morse, J., Schwartz, R.D., Nisenson, P.: Astrophys. J. 453, 322 (1995)CrossRefADSGoogle Scholar
  27. Danly, L., Lockman, F.J., Meade, M.R., Savage, B.D.: ApJSS 81, 125 (1991)CrossRefADSGoogle Scholar
  28. Deleuil, M., Bouret, J.-C., Catala, C., Lecavelier des Etangs, A., Vidal-Madjar, A., Roberge, A., Feldman, P.D., Martin, C., Ferlet, R.: A&A 429, 247 (2005)CrossRefADSGoogle Scholar
  29. Devine, D., Grady, C.A., Kimble, R.A., Woodgate, B., Bruhweiler, F.C., Boggess, A., Linsky, J.L., Clampin, M.: Astrophys. J. 542, L115 (2000)CrossRefADSGoogle Scholar
  30. Donati, J.-F., Semel, M., Carter, B.D., Rees, D.E., Collier Cameron, A.: Month. Not. R.A.S. 291, 658 (1997)ADSGoogle Scholar
  31. Ehrenreich, D.: PhD Thesis, Univ. de Paris VI (2005)Google Scholar
  32. Ferro-Fonán, C., Gómez de Castro, A.I.: Month. Not. R.A.S. 342, 427 (2003)CrossRefADSGoogle Scholar
  33. Glassgold, A.E., Najita, J., Igea, J.: Astrophys. J. 615, 972 (2004)CrossRefADSGoogle Scholar
  34. Grady, C.A., Woodgate, B., Heap, S.R., Bowers, C., Nuth, J.A., III, Herczeg, G.J., Hill, H.G.M.: Astrophys. J. 620, 470 (2005)CrossRefADSGoogle Scholar
  35. Grady, C.A., Woodgate, B., Torres, C.A.O., Henning, Th., Apai, D., Rodmann, J., Wang, H.S.B., Linz, H., Williger, G.M., Brown, A., Wilkinson, E., Harper, G.M., Herczeg, G.J., Danks, A., Vieira, G.L., Malumuth, E., Collins, N.R., Hill, R.S.: Astrophys. J. 608, 809 (2004)CrossRefADSGoogle Scholar
  36. Gómez de Castro, A.I.: Month. Not. R.A.S. 332, 409 (2002)CrossRefADSGoogle Scholar
  37. Gómez de Castro, A.I.: A&SS 292, 561 (2004)ADSGoogle Scholar
  38. Gómez de Castro, A.I. Verdugo, E.: APJ, submitte (2005)Google Scholar
  39. Gómez de Castro, A.I., Fernández, M.: Month. Not. R.A.S. 283, 55 (1996)ADSGoogle Scholar
  40. Gómez de Castro, A.I., Franqueira, M.: IUE-ULDA Access Guide No. 8: T Tauri Stars, ESA Scientific Publication, ESA-SP 1205 (1997a)Google Scholar
  41. Gómez de Castro, A.I., Franqueira, M.: Astrophys. J. 482, 465 (1997b)CrossRefADSGoogle Scholar
  42. Gómez de Castro, A.I., Ferro-Fontán, C.: MNRAS 362, 569 (2005)CrossRefADSGoogle Scholar
  43. Gómez de Castro, A.I., Lamzin, S.: Month. Not. R.A.S. 304, L41 (1999)CrossRefADSGoogle Scholar
  44. Gómez de Castro, A.I., Robles, A.: INES Access Guide No. 1: Herbig-Haro Objects, ESA Scientific Publication, ESA-SP 1237 (1999)Google Scholar
  45. Gómez de Castro, A.I., Verdugo, E.: Astrophys. J. 597, 443 (2003a)CrossRefADSGoogle Scholar
  46. Goodson, A.P., Boehm, K.-H., Winglee, R.M.: Astrophys. J. 524, 142 (1999)CrossRefADSGoogle Scholar
  47. Goodson, A.P., Winglee, R.M., Boehm, K.-H.: Astrophys. J. 489, 199 (1997)CrossRefADSGoogle Scholar
  48. Guenther, E.W., Lehmann, H., Emerson, J.P., Staude, J.: A&A 341, 768 (1999)ADSGoogle Scholar
  49. Gullbring, E., Calvet, N., Muzerolle, J., Hartmann, L.: Astrophys. J. 544, 927 (2000)CrossRefADSGoogle Scholar
  50. Haffner, L.M., Reynolds, R.J., Tufte, S.L., Madsen, G.J., Jaehnig, K.P., Percival, J.W.: Astrophys. J. Suppl. Ser. 149, 405 (2003)CrossRefADSGoogle Scholar
  51. Hartigan, P., Hartmann, L., Kenyon, S.J., Strom, S.E., Skrutskie, M.F.: Astrophys. J. 354, L25 (1990)CrossRefADSGoogle Scholar
  52. Heyer, M., Zweibel, E.: A&SS 292, 9 (2004)ADSGoogle Scholar
  53. Herczeg, G.J., Linsky, J.L., Valenti, J.A., Johns-Krull, C.M., Wood, B.E.: Astrophys. J. 572, 310 (2002)CrossRefADSGoogle Scholar
  54. Herczeg, G.J., Wood, B.E., Linsky, J.L., Valenti, J.A., Johns-Krull, C.M.: Astrophys. J. 607, 369 (2004)CrossRefADSGoogle Scholar
  55. Johns-Krull, C.M., Valenti, J.A., Koresko, C.: Astrophys. J. 516, 900 (1999)CrossRefADSGoogle Scholar
  56. Kueker, M., Henning, T., Ruediger, G.: Astrophys. J. 589, 397 (2003)CrossRefADSGoogle Scholar
  57. Kulkarni, S., Heiles, C.: Galactic and Extragalactic Radio Astronomy, Springer-Verlag, Berlin and New York, p. 95 (1988)Google Scholar
  58. Lallement, R., Bertin, P.: A&A 266, 479 (1992)ADSGoogle Scholar
  59. Lallement, R., Welsh, B.Y., Vergely, J.L., Crifo, F., Sfeir, D.: A&A 411, 447 (2003)CrossRefADSGoogle Scholar
  60. Lauroesch, J.T., Meyer, D.M., Blades, J.C.: Astrophys. J. 543, L43, (2000)CrossRefADSGoogle Scholar
  61. Lecavelier des Etangs, A., deleuil, M., Vidal-Madjar, A., Roberge, A., LePetit, F., et al.: A&A 407, 935 (2003)CrossRefADSGoogle Scholar
  62. Lecavelier des Etangs, A., Vidal-Madjar, A., McConnell, J.C., Hébrard, G.: A&A 418, L1 (2004)CrossRefADSGoogle Scholar
  63. Lecavelier des Etangs, A., Vidal-Madjar, A., Roberge, A., Feldman, P.D., deleuil, M., et al.: Nature 412, 706 (2001)CrossRefADSGoogle Scholar
  64. Lee, M.G., Bohm, K.H., Temple, S.D., Raga, A.C., Mateo, M.L., Brugel, E.W., Mundt, R.: Astron. J. 96, 1690 (1988)CrossRefADSGoogle Scholar
  65. Lignieres, F., Catala, C., Mangeney, A.: A&A 314, 465 (1996)ADSGoogle Scholar
  66. Liseau, R., Huldtgren, M., Fridlund, C.V.M., Cameron, M.: A&A 306, 255 (1996)ADSGoogle Scholar
  67. López-Martin, L., Cabrit, S., Dougados, C.: A&A 405, L1 (2003)CrossRefADSGoogle Scholar
  68. Maíz-Apellániz, J.: Astrophys. J. 560, L83 (2001)CrossRefADSGoogle Scholar
  69. Martin, C., Bowyer, S.: Astrophys. J. 350, 242 (1990)CrossRefADSGoogle Scholar
  70. Matt, S., Goodson, A.P., Winglee, R.M., Boehm, K.-H.: Astrophys. J. 574, 232 (2002)CrossRefADSGoogle Scholar
  71. McKee, C.F., Ostricker, J.P.: Astrophys. J. 218, 148 (1977)CrossRefADSGoogle Scholar
  72. Moos, H.W., Sembach, K.R., Vidal-Madjar, A., York, D.G., Friedman, S.D., Hébrard, G., Kruk, J.W., Lehner, N., Lemoine, M., Sonneborn, G., Wood, B.E., Ake, T.B., André, M., Blair, W.P., Chayer, P., Gry, C., Dupree, A.K., Ferlet, R., Feldman, P.D., Green, J.C., Howk, J.C., Hutchings, J.B., Jenkins, E.B., Linsky, J.L., Murphy, E.M., Oegerle, W.R., Oliveira, C., Roth, K., Sahnow, D.J., Savage, B.D., Shull, J.M., Tripp, T.M., Weller, E.J., Welsh, B.Y., Wilkinson, E., Woodgate, B.E.: Astrophys. J. Suppl. Ser. 140, 3 (2002)CrossRefADSGoogle Scholar
  73. Muzerolle, J., Calvet, N., Hartmann, L.: Astrophys. J. 550, 944 (2001)CrossRefADSGoogle Scholar
  74. Ortolani, S., D’Odorico, S.: A&A 83, L8 (1980)ADSGoogle Scholar
  75. Petrov, P.P., Gahm, G.F., Gameiro, J.F., Duemmler, R., Ilyin, I.V., et al.: A&A 369, 993 (2001)CrossRefADSGoogle Scholar
  76. Praderie, F., Catala, C., Simon, T., Boesgaard, A.M.: Astrophys. J. 303, 311 (1986)CrossRefADSGoogle Scholar
  77. Priest, E., Forbes, T.: Magnetic reconnection: MHD Theory and Applications, Cambridge University Press, New York (2000)Google Scholar
  78. Raymond, J.C., Blair, W.P., Long, K.S.: Astrophys. J. 489, 314 (1997)CrossRefADSGoogle Scholar
  79. Redfield, S., Linsky, J.L.: Astrophys. J. 534, 825 (2000)CrossRefADSGoogle Scholar
  80. Redfield, S., Linsky, J.L.: Astrophys. J. 613, 1004 (2004)CrossRefADSGoogle Scholar
  81. Reynolds, R.J., Chaudhary, V., Madsen, G.J., Haffner, L.M.: Astron. J. 129, 927 (2005)CrossRefADSGoogle Scholar
  82. Richter, P., Savage, B.D., Wakker, B.P., Sembach, K.R., Kalberla, P.M.W.: Astrophys. J. 549, 281 (2001)CrossRefADSGoogle Scholar
  83. Roberge, A., Lecavelier des Etangs, A., Grady, C.A., Vidal-Madjar, A., Bouret, J.-C., et al.: Astrophys. J. 551, L97 (2001)CrossRefADSGoogle Scholar
  84. Rotstein, N,, Gimenez de Castro, C.G.: Astrophys. J. 464, 859 (1996)CrossRefADSGoogle Scholar
  85. Sakurai, T.: A&A 152, 121 (1985)MATHADSGoogle Scholar
  86. Savage, B.D., Sembach, K.R.: Astrophys. J. 434, 145 (1994)CrossRefADSGoogle Scholar
  87. Schmutzler, T., Tscharnuter, W.M.: A&A 273, 318 (1993)ADSGoogle Scholar
  88. Schwartz, R.D.: Annu. Rev. Astron. Astrophys. 21, 209 (1983)CrossRefADSGoogle Scholar
  89. Schwartz, R.D., Dopita, M.A., Cohen, M.: Astron. J. 90, 1820 (1985)CrossRefADSGoogle Scholar
  90. Shapiro, P.R., Moore, R.T.: Astrophys. J. 207, 460 (1976)CrossRefADSGoogle Scholar
  91. Simon, T., Vrba, F.J., Herbst, W.: Astron. J. 100, 1957 (1990)CrossRefADSGoogle Scholar
  92. Slavin, J.D., Frisch, P.C.: Astrophys. J. 565, 364 (2002)CrossRefADSGoogle Scholar
  93. Tripp, T.M., Wakker, B.P., Jenkins, E.B., Bowers, C.W., Danks, A.C., Green, R.F., Heap, S.R., Joseph, C.L., Kaiser, M.E., Linsky, J.L., Woodgate, B.E.: Astron. J. 125, 3122 (2003)CrossRefADSGoogle Scholar
  94. Valenti, J.A., Johns-Krull, C.M., Linsky, J.L.: Astrophys. J. Suppl. Ser. 129, 399 (2000)CrossRefADSGoogle Scholar
  95. Vidal-Madjar, A., Lagrange-Henri, A.-M., Feldman, P.D., Beust, H., Lissauer, J.J., deleuil, M., Ferlet, R., Gry, C., Hobbs, L.M., McGrath, M.A., McPhate, J.B., Moos, H.W.: A&A 290, 245 (1994)ADSGoogle Scholar
  96. Vidal-Madjar, A., Laurent, C., Bruston, P., Audouze, J.: Astrophys. J. 223, 589 (1978)CrossRefADSGoogle Scholar
  97. Vidal-Madjar, A., Lecavelier des Etangs, A., Désert, J.-M., Ballester, G.E., Ferlet, R., Hébrard, G., Mayor, M.: Nature 422, 143 (2003)CrossRefADSGoogle Scholar
  98. Vidal-Madjar, A., Lecavelier des Etangs, A., Ferlet, R.: Planet. Space Sci. 46, 629 (1998)CrossRefADSGoogle Scholar
  99. Vidal-Madjar, A., Désert, J.-M., Lecavelier des Etangs, A., Hébrard, G., Ballester, G.E., Ehrenreich, D., Ferlet, R., McConnell, J.C., Mayor, M., Parkinson, C.D.: Astrophys. J. 604, L69 (2004)CrossRefADSGoogle Scholar
  100. Watson, A.J., Donahue, T.M., Walker, J.C.G.: Icarus 48, 150 (1981)CrossRefADSGoogle Scholar
  101. Witte, M.: A&A 426, 835 (2004)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • Ana I. Gómez de Castro
    • 1
  • Alain Lecavelier
    • 2
  • Miguel D’Avillez
    • 3
    • 4
  • Jeffrey L. Linsky
    • 5
  • José Cernicharo
    • 6
  1. 1.Instituto de Astronomía y Geodesia (CSIC-UCM)Universidad Complutense de MadridMadridSpain
  2. 2.Institute d’Astrophysique de ParisParisFrance
  3. 3.Department of MathematicsUniversity of Évora R. Romão Ramalho 59Portugal
  4. 4.Institut f’ur AstronomieUniversität WienWienAustria
  5. 5.JILAUniversity of Colorado and NISTBoulderUSA
  6. 6.DAMIR-IEM-CSICMadridSpain

Personalised recommendations