Skip to main content

Turbulence and Magnetic Fields in Astrophysical Plasmas

  • Chapter
Magnetohydrodynamics

Part of the book series: Fluid Mechanics And Its Applications ((FMIA,volume 80))

Magnetic fields permeate the Universe. They are found in planets, stars, accretion discs, galaxies, clusters of galaxies, and the intergalactic medium. While there is often a component of the field that is spatially coherent at the scale of the astrophysical object, the field lines are tangled chaotically and there are magnetic fluctuations at scales that range over orders of magnitude. The cause of this disorder is the turbulent state of the plasma in these systems. This plasma is, as a rule, highly conducting, so the magnetic field lines are entrained by (frozen into) the fluid motion. As the fields are stretched and bent by the turbulence, they can resist deformation by exerting the Lorentz force on the plasma. The turbulent advection of the magnetic field and the field’s back reaction together give rise to the statistically steady state of fully developed MHD turbulence. In this state, energy and momentum injected at large (object-size) scales are transfered to smaller scales and eventually dissipated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Quataert E, Gruzinov A (1999) Turbulence and particle heating in advection-dominated accretion flows. Astrophys J 520:248-255

    Article  Google Scholar 

  2. Shakura NI, Sunyaev RA (1973) Black holes in binary systems. Observational appearance. Astron Astrophys 24:337-355

    Google Scholar 

  3. Dennis TJ, Chandran BDG (2005) Turbulent heating of galaxy-cluster plasmas. Astrophys J 622:205-216

    Article  Google Scholar 

  4. Kolmogorov AN (1941) The local structure of turbulence in incompressible viscous fluid at very large Reynolds numbers. Dokl Akad Nauk SSSR 30:299-303 [English translation: Proc R Soc Lond A 434:9-13 (1991)]

    Google Scholar 

  5. Landau LD, Lifshitz EM (1987) Fluid Mechanics. Butterworth-Heinemann, Oxford

    MATH  Google Scholar 

  6. Elsasser WM (1950) The hydromagnetic equations. Phys Rev 79:183

    Article  MATH  Google Scholar 

  7. Kraichnan RH (1965) Inertial-range spectrum of hydromagnetic turbulence. Phys Fluids 8:1385-1387

    Article  MathSciNet  Google Scholar 

  8. Iroshnikov RS (1963) Turbulence of a conducting fluid in a strong magnetic field. Astron Zh 40:742-750 [English translation: Sov Astron 7:566-571 (1964) Note that Iroshnikov’s initials are given incorrectly as PS in the translation]

    Google Scholar 

  9. Parker EN (1958) Dynamics of the interplanetary gas and magnetic fields. Astro-phys J 128:664-676

    Article  Google Scholar 

  10. Coleman PJ (1968) Turbulence, viscosity, and dissipation in the solar-wind plasma. Astrophys J 153:371-388

    Article  Google Scholar 

  11. Goldstein ML, Roberts DA (1999) Magnetohydrodynamic turbulence in the solar wind. Phys Plasmas 6:4154-4160

    Article  Google Scholar 

  12. Dobrowolny M, Mangeney A, Veltri P (1980) Fully developed anisotropic hydromagnetic turbulence in the interplanetary space. Phys Rev Lett 45:144-147

    Article  MathSciNet  Google Scholar 

  13. Belcher JW, Davis L (1971) Large-amplitude Alfvén waves in interplanetary medium, 2. J Geophys Res 76:3534-3563

    Article  Google Scholar 

  14. Matthaeus WH, Goldstein ML, Roberts DA (1990) Evidence for the presence of quasi-two-dimensional nearly incompressible fluctuations in the solar wind. J Geophys Res 95:20673-20683

    Article  Google Scholar 

  15. Matthaeus WH, Goldstein ML (1982) Measurement of the rugged invariants of magnetohydrodynamic turbulence in the solar wind. J Geophys Res 87:6011-1028

    Article  Google Scholar 

  16. Armstrong JW, Rickett BJ, Spangler SR (1995) Electron density power spec-trum in the local interstellar medium. Astrophys J 443:209-221

    Article  Google Scholar 

  17. Maron J, Goldreich P (2001) Simulations of incompressible magnetohydrody-namic turbulence. Astrophys J 554:1175-1196

    Article  Google Scholar 

  18. Cho J, Lazarian A, Vishniac ET (2002) Simulations of magnetohydrodynamic turbulence in a strongly magnetized medium. Astrophys J 564:291-301

    Article  Google Scholar 

  19. MĂĽller W-C, Biskamp D, Grappin R (2003) Statistical anisotropy of magntohy-drodynamic turbulence. Phys Rev E 67:066302

    Article  MathSciNet  Google Scholar 

  20. Montgomery D, Turner L (1981) Anisotropic magnetohydrodynamic turbulence in a strong external magnetic field. Phys Fluids 24:825-831

    Article  MATH  Google Scholar 

  21. Shebalin JV, Matthaeus WH, Montgomery D (1983) Anisotropy in MHD tur-bulence due to a mean magnetic field. J Plasma Phys 29:525-547

    Article  Google Scholar 

  22. Ng CS, Bhattacharjee A (1996) Interaction of shear-Alfvén wave packets: implication for weak magnetohydrodynamic turbulence in astrophysical plasmas. Astrophys J 465:845-854

    Article  Google Scholar 

  23. Goldreich P, Sridhar S(1997) Magnetohydrodynamic turbulence revisited. Astrophys J 485:680-688

    Article  Google Scholar 

  24. Galtier S, Nazarenko SV, Newell AC, Pouquet A (2000) A weak turbulence theory for incompressible magnetohydrodynamics. J Plasma Phys 63:447-488

    Article  Google Scholar 

  25. Lithwick Y, Goldreich P (2003) Imbalanced weak magnetohydrodynamic tur-bulence. Astrophys J 582:1220-1240

    Article  Google Scholar 

  26. Sridhar S, Goldreich P (1994) Toward a theory of interstellar turbulence. I. Weak Alfvénic turbulence. Astrophys J 432:612-621

    Article  Google Scholar 

  27. Goldreich P, Sridhar S(1995) Toward a theory of interstellar turbulence. II. Strong Alfvénic turbulence. Astrophys J 438:763-775

    Article  Google Scholar 

  28. Strauss HR (1976) Nonlinear, three-dimensional magnetohydrodynamics of noncircular tokamaks. Phys Fluids 19:134-140

    Article  Google Scholar 

  29. Obukhov AM (1949) Structure of a temperature field in a turbulent flow. Izv Akad Nauk SSSR Ser Geogr Geofiz 13:58-69

    Google Scholar 

  30. Higdon JC (1984) Density fluctuations in the interstellar medium: evidence for anisotropic magnetogasdynamic turbulence. I. Model and astrophysical sites. Astrophys J 285:109-123

    Google Scholar 

  31. Lithwick Y, Goldreich P (2001) Compressible magnetohydrodynamic turbulence in interstellar plasmas. Astrophys J 562:279-296

    Article  Google Scholar 

  32. Schekochihin AA, Cowley CS, Taylor SF, Maron JL, McWilliams JC (2004) Simulations of the small-scale turbulent dynamo. Astrophys J 612:276-307

    Article  Google Scholar 

  33. Biskamp D, MĂĽller W-C (2000) Scaling properties of three-dimensional isotropic magnetohydrodynamic turbulence. Phys Plasmas 7:4889-4900

    Article  MathSciNet  Google Scholar 

  34. Spitzer L (1962) Physics of fully ionized gases. Wiley, New York

    Google Scholar 

  35. Childress S, Gilbert AD (1995) Stretch, Twist, Fold: The Fast Dynamo. Springer, Berlin

    MATH  Google Scholar 

  36. Meneguzzi M, Frisch U, Pouquet A (1981) Helical and nonhelical turbulent dynamos. Phys Rev Lett 47:1060-1064

    Article  Google Scholar 

  37. Haugen NEL, Brandenburg A, Dobler W (2004) Simulations of nonhelical hydromagnetic turbulence. Phys Rev E 70:016308

    Article  Google Scholar 

  38. Batchelor GK (1950) On the spontaneous magnetic field in a conducting liquid in turbulent motion. Proc R Soc Lond A 201:405-416

    Article  MATH  MathSciNet  Google Scholar 

  39. Schekochihin A, Cowley S, Maron J, Malyshkin L (2002) Structure of small-scale magnetic fields in the kinematic dynamo theory. Phys Rev E 65:016305

    Article  MathSciNet  Google Scholar 

  40. Ott E (1998) Chaotic flows and kinematic magnetic dynamos: A tutorial review. Phys Plasmas 5:1636-1646

    Article  MathSciNet  Google Scholar 

  41. Chertkov M, Falkovich G, Kolokolov I, Vergassola M (1999) Small-scale turbulent dynamo. Phys Rev Lett 83:4065-4068

    Article  Google Scholar 

  42. Zeldovich YaB, Ruzmaikin AA, Molchanov SA, Sokoloff DD (1984) Kinematic dynamo problem in a linear velocity field. J Fluid Mech 144:1-11

    Article  Google Scholar 

  43. Zeldovich YaB (1956) The magnetic field in the two-dimensional motion of a conducting turbulent liquid. Zh Exp Teor Fiz 31:154-155 [English translation: Sov Phys JETP 4:460-462 (1957)]

    Google Scholar 

  44. Goldhirsch I, Sulem P-L, Orszag SA (1987) Stability and Lyapunov stability of dynamical systems: a differential approach and a numerical method. Physica D 27:311-337

    Article  MATH  MathSciNet  Google Scholar 

  45. Kazantsev AP (1967) Enhancement of a magnetic field by a conducting fluid. Zh Eksp Teor Fiz 53:1806-1813 [English translation: Sov Phys JETP 26:1031-1034(1968)]

    Google Scholar 

  46. Zeldovich YaB, Ruzmaikin AA, Sokoloff DD (1990) The Almighty Chance. World Scientific, Singapore

    Google Scholar 

  47. Falkovich G, Gawedzki K, Vergassola M (2001) Particles and fields in fluid turbulence. Rev Mod Phys 73:913-975

    Article  MathSciNet  Google Scholar 

  48. Kraichnan RH (1968) Small-scale structure of a scalar field convected by turbulence. Phys Fluids 11:945-953

    Article  MATH  MathSciNet  Google Scholar 

  49. Kulsrud RM, Anderson SW (1992) The spectrum of random magnetic fields in the mean field dynamo theory of the galactic magnetic field. Astrophys J 396:606-630

    Article  Google Scholar 

  50. SchlĂĽter A, Biermann L(1950) Interstellare Magnetfelder. Z Naturforsch 5a:237-251

    Google Scholar 

  51. Schekochihin AA, Cowley CS, Hammett GW, Maron JL, McWilliams JC (2002) A model of nonlinear evolution and saturation of the turbulent MHD dynamo. New J Phys 4:84

    Article  Google Scholar 

  52. Gruzinov AV, Diamond PH (1996) Nonlinear mean field electrodynamics of turbulent dynamos. Phys Plasmas 3:1853-1857

    Article  Google Scholar 

  53. Schuecker P, Finoguenov A, Miniati F, Böhringer H, Briel UG (2004) Probing turbulence in the Coma galaxy cluster. Astron Astrophys 426:387-397

    Article  Google Scholar 

  54. Rebusco P, Churazov E, Böhringer H, Forman W (2005) Impact of stochastic gas motions on galaxy cluster abundance profiles. Mon Not R Astr Soc 359:1041-1048

    Article  Google Scholar 

  55. Inogamov NA, Sunyaev RA (2003) Turbulence in clusters of galaxies and X-ray-line profiles. Astron Lett 29:791-824

    Article  Google Scholar 

  56. Fabian AC, Sanders JS, Crawford CS, Conselice CJ, Gallagher JS, Wyse RFG (2003) The relationship between optical Hα filaments and the X-ray emission in the core of the Perseus cluster. Mon Not R Astr Soc 344:L48-L52

    Article  Google Scholar 

  57. Willson MAG (1970) Radio observations of the cluster of galaxies in Coma Berenices — The 5C4 survey. Mon Not R Astr Soc 151:1-44

    Google Scholar 

  58. Kim K-T, Kronberg PP, Dewdney PE, Landecker TL (1990) The halo and magnetic field of the Coma cluster of galaxies. Astrophys J 355:29-37

    Article  Google Scholar 

  59. Govoni F, Feretti L (2004) Magnetic fields in clusters of galaxies. Int J Mod Phys D 13:1549-1594

    Article  MATH  Google Scholar 

  60. Clarke TE, Kronberg PP, Böhringer H (2001) A new radio-X-ray probe of galaxy cluster magnetic fields. Astrophys J 547:L111-L114

    Article  Google Scholar 

  61. Vogt C, Enßlin TA (2005) A Bayesian view on Fraday rotation maps — Seeing the magnetic power spectra in galaxy clusters. Astron Astrophys 434:67-76

    Article  Google Scholar 

  62. Braginskii SI (1965) Transport processes in a plasma. Rev Plasma Phys 1:205-310

    Google Scholar 

  63. Schekochihin AA, Cowley CS, Kulsrud RM, Hammett GW, Sharma P (2005) Plasma instabilities and magnetic-field growth in clusters of galaxies. Astrophys J 629:139-142

    Article  Google Scholar 

  64. Rosenbluth MN (1956) Stability of the pinch. Los Alamos Scientific Laboratory Report, LA-2030

    Google Scholar 

  65. Chandrasekhar S, Kaufman AN, Watson KM (1958) The stability of the pinch. Proc R Soc Lond A 245:435-455

    Article  MATH  MathSciNet  Google Scholar 

  66. Parker EN (1958) Dynamical instability in an anisotropic ionized gas of low density. Phys Rev 109:1874-1876

    Article  MATH  Google Scholar 

  67. Vedenov AA, Sagdeev RZ (1958) Some properties of the plasma with anisotropic distribution of the velocities of ions in the magnetic field. Sov Phys Dokl 3:278

    Google Scholar 

  68. Feldman WC, Asbridge JR, Bame SJ, Montgomery MD (1974) Interpenetrating solar wind streams. Rev Geophys Space Phys 12:715-723

    Article  Google Scholar 

  69. Marsch E, Ao X-Z, Tu C-Y (2004) On the temperature anisotropy of the core part of the proton velocity distribution function in the solar wind. J Geophys Res 109:A04102

    Article  Google Scholar 

  70. Gary SP (1993) Theory of space plasma microinstabilities. Cambridge University Press, Cambridge

    Book  Google Scholar 

  71. Frieman EA, Chen L (1982) Nonlinear gyrokinetic equations for low-frequency electromagnetic waves in general plasma equilibria. Phys Fluids 25:502-508

    Article  MATH  Google Scholar 

  72. Schekochihin AA, Cowley CS, Dorland WD, Hammett GW, Howes GG, Quataert E, Tatsuno T (2007) Kinetic and fluid turbulent cascades in magne-tized weakly collisional astrophysical plasmas. Astrophys J (submitted; e-print arXiv:0704.0044)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Schekochihin, A.A., Cowley, S.C. (2007). Turbulence and Magnetic Fields in Astrophysical Plasmas. In: Magnetohydrodynamics. Fluid Mechanics And Its Applications, vol 80. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4833-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-4833-3_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-4832-6

  • Online ISBN: 978-1-4020-4833-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics