Numerical Modelling for Electromagnetic Processing of Materials

  • Valdis Bojarevics
  • Koulis Pericleous
Part of the Fluid Mechanics And Its Applications book series (FMIA, volume 80)

Electromagnetic processing of materials (EPM) is one of the most widely practiced and fast growing applications of magnetic and electric forces to fluid flow. EPM is encountered in both industrial processes and laboratory investigations. Applications range in scale from nano-particle manipulation to tonnes of liquid metal treated in the presence of various configurations of magnetic fields. Some of these processes are specifically designed and made possible by the use of the electromagnetic force, like the magnetic levitation of liquid droplets, whilst others involve electric currents essential for electrothermal or electrochemical reasons, for instance, in electrolytic metal production and in induction melting. An insight for the range of established and novel EPM applications can be found in the review presented by Asai [1] in the EPM-2003 conference proceedings.


Liquid Metal Electromagnetic Force Electromagnetic Processing Magnetic Levitation Aluminium Reduction Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Asai S(2003) Challenging of EPM in economic mass production, nano-technology and environment protection. In: Proc 4th Int Conf Electodyn Proc Materials, Lyon:1-8Google Scholar
  2. 2.
    Jaluria Y (2001) Fluid flow phenomena in materials processing. J Fluids Eng 123:173-210CrossRefGoogle Scholar
  3. 3.
    Okress E, Wroughton D, Comenetz G, Brace P, Kelly J (1952) Electromagnetic levitation of solid and molten metals. J Appl Phys 23:545-552CrossRefGoogle Scholar
  4. 4.
    Schwartz E, Szekely J, Ilegbusi OJ, Zong J-H, Egry I (1991) The computation of the electromagnetic force fields and transport phenomena in levitated metallic droplets in the microgravity environment. In: MHD in process metallurgy, TMS, pp 81-87Google Scholar
  5. 5.
    Mestel AJ (1982) Magnetic levitation of liquid metals. J Fluid Mech 117:27-43MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Szekely J, Schwartz E (1994) Perspectives on EM levitation in space experimen-tation. In: International Symposium on Electromagnetic Processing of Materials, ISIJ, Nagoya, pp 9-14Google Scholar
  7. 7.
    Li BQ (1994) The transient magnetohydrodynamic phenomena in electromag-netic levitation process. Int J Engng Sci 32:1315-1336MATHCrossRefGoogle Scholar
  8. 8.
    Hyers RW, Trapaga G, Abedian B (2003) Laminar-turbulent transition in an electromagnetically levitated droplet. Metall Materials Trans B 34:29CrossRefGoogle Scholar
  9. 9.
    Bojarevics V, Pericleous K (2003) Modelling electromagnetically levitated liquid droplet oscillations. ISIJ Int 43(6):890-898CrossRefGoogle Scholar
  10. 10.
    Sneyd AD, Moffatt HK (1982) Fluid dynamical aspects of the levitation melting process. J Fluid Mech 117:45-70MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Gagnoud A, Brancher JP (1985) Modelling of coupled phenomena in electro-magnetic levitation. IEEE Trans Magn 21:2424-2427CrossRefGoogle Scholar
  12. 12.
    Smythe R (1989) Static and Dynamic Electricity. Hemisphere, New YorkGoogle Scholar
  13. 13.
    Bojarevics V, Pericleous K, Cross M (2000) Modelling the dynamics of the semi-levitation melting. Metall Materials Trans B 31:179-189CrossRefGoogle Scholar
  14. 14.
    Cummings DL, Blackburn DA (1991) Oscillations of magnetically levitated aspherical droplets. J Fluid Mech 224:395-416MATHCrossRefGoogle Scholar
  15. 15.
    Bratz A, Egry I (1995) Surface oscillations of electromagnetically levitated vis-cous metal droplets. J Fluid Mech 298:341-359MATHCrossRefGoogle Scholar
  16. 16.
    Bojarevics V, Pericleous K (2001) Magnetic levitation fluid dynamics. Magne-tohydrodynamics 37:93-102Google Scholar
  17. 17.
    Enokizono M, Todaka T, Yokoji K, Wada Y, Matsumoto I (1995) Three dimen-sional moving simulation of levitation melting method. IEEE Trans Magn 31:1869-1872CrossRefGoogle Scholar
  18. 18.
    Winstead CH, Gazzerro PC, Hoburg JF (1998) Surface-coupled modeling of magnetically confined liquid metal in three-dimensional geometry. Metall Mate-rials Trans B 29:275-281CrossRefGoogle Scholar
  19. 19.
    Priede J, Gerbeth G, Mikelsons A, Gelfgat Y (2000) Instabilities of electromag-netically levitated bodies and their prevention. In: Proceedings of the 3rd Inter-national Symposium on Electromagnetic Processing Materials, ISIJ, Nagoya, pp 352-357Google Scholar
  20. 20.
    Yasuda H, Ohnaka I, Ninomiya Y, Ishii R, Fujita S, Kishio K (2003) Solidifica-tion behavior in the melt levitated by simultaneous imposition of alternative and high static magnetic fields. In: Proceedings of the 4th International Symposium on Electromagnetic Processing Materials, Lyon, pp 459-463Google Scholar
  21. 21.
    Gillon P (2000) Processing of materials with high DC magnetic field gradi-ents. In: Proceedings of the 3rd International Symposium on Electromagnetic Processing Materials, ISIJ, Nagoya, pp 635-640Google Scholar
  22. 22.
    Egry I, Diefenbach A, Dreier W, Piller J (2001) Containerless processing in space - thermophysical property measurements using electromagnetic levitation. Int J Thermophys 22:569-578CrossRefGoogle Scholar
  23. 23.
    Ikezoe Y, Hirota N, Nakgawa J, Kitazawa K (1998) Making water levitate. Nature 393:749-750CrossRefGoogle Scholar
  24. 24.
    Motokawa M (2000) Orientation and levitation effects in high magnetic fields. In: Proceedings of the 3rd International Symposium on Electromagnetic Processing Materials, ISIJ, Nagoya, pp 612-617Google Scholar
  25. 25.
    Brooks RF, Day AP (1999) Observations of the effects of oxide skins on the oscillations of EM levitated metal droplets. Int J Thermophys 20:1041-1050CrossRefGoogle Scholar
  26. 26.
    Feng ZC, Leal LG (1995) Translational instability of a bubble undergoing shape oscillations. Phys Fluids 7:1325-1336MATHCrossRefGoogle Scholar
  27. 27.
    Tadano H, Kainuma K, Take T, Shinokura T, Hayashi S (2000) Vacuum melting with cold crucible levitation melting furnaces. In: Proceedings of the 3rd Inter-national Symposium on Electromagnetic Processing Materials, ISIJ, Nagoya, pp 277-282Google Scholar
  28. 28.
    Bernier F, Vogt M, Muehlbauer A (2000) Numerical calculations of the thermal behaviour and the melt flow in induction furnace with cold crucible. In: Pro-ceedings of the 3rd International Symposium on Electromagnetic Processing Materials, ISIJ, Nagoya, pp 283-288Google Scholar
  29. 29.
    Harding RA, Wickins M, Bojarevics V, Pericleous K (2004) The development and experimental validation of a numerical model of an induction skull melting furnace. Metall Materials Trans B 35:785-803Google Scholar
  30. 30.
    Gillon P (2000) Processing of materials with high DC magnetic field gradi-ents. In: Proceedings of the 3rd International Symposium on Electromagnetic Processing Materials, ISIJ, Nagoya, pp 635-640Google Scholar
  31. 31.
    Toh T, Yamamura H, Wakoh M, Takeuchi E (2003) Inclusion behavior in cold crucible levitation melting and its applications to cleanliness evaluation. In: Proceedings of the 4th International Conference on Electromagnetic Processing Materials, Lyon, pp 226-231Google Scholar
  32. 32.
    Tanaka T, Kurita K, Kuroda A (1991) Mathematical modeling for electromag-netic field and shaping of melts in cold crucibles. Liquid Metal Flows ASME FED 115:49-54Google Scholar
  33. 33.
    Enokizono M, Todaka T, Matsumoto I, Wada Y (1993) Levitation melting appa-ratus with flux concentration cap. IEEE Magn 29 (6):2968-2970CrossRefGoogle Scholar
  34. 34.
    Baake E, Muehlbauer A, Jakowitsch A, Andree W (1995) Extension of the k − ε model for the numerical simulation of the melt flow in induction crucible furnaces. Metall Mater Trans B 26:529-536CrossRefGoogle Scholar
  35. 35.
    Baake E, Umbrashko A, Nacke B, Jakovics A, Bojarevics A (2003) Experimental investigations and LES modelling of the turbulent melt flow and temperature distribution in the cold crucible induction furnace. In: Proceedings of the 4th International Conference on Electromagnetic Processing Materials, Lyon, pp 214-219Google Scholar
  36. 36.
    Fukumoto H, Hosokawa Y, Ayata K, Morishita M (1991) Numerical simulation of meniscus shape considering internal flow effects. MHD in Process Metallurgy. Miner, Met Mater Soc:21-26Google Scholar
  37. 37.
    Kageyama R, Evans JW (1998) A mathematical model for the dynamic behav-iour of melts subjected to electromagnetic forces. Part 1. Metall Mater Trans B 29:919-928CrossRefGoogle Scholar
  38. 38.
    Wilcox DC (1998) Turbulence Modelling for CFD. DCW Industries, La Canada, CAGoogle Scholar
  39. 39.
    Bojarevics A, Bojarevics V, Gelfgat J, Pericleous K (1999) Liquid metal turbu-lent flow dynamics in a cylindrical container with free surface: experiment and numerical analysis. Magnetohydrodynamics 35:258-277Google Scholar
  40. 40.
    Widlund O (2000) Modelling of magnetohydrodynamic turbulence. Ph.D. thesis. Royal Institute of Technology, Stockholm, Sweden, ISSN 0348-467XGoogle Scholar
  41. 41.
    Widlund O (2002) Draft of K − ω − α closure for modeling of MHD turbulence (unpublished)Google Scholar
  42. 42.
    Mei CC (1989) Applied dynamics of ocean surface waves. World ScientificGoogle Scholar
  43. 43.
    Von Kaenel R, Antille JP (1996) Magnetohydrodynamic stability in alumina reduction cells. Travaux 23(27):285-297Google Scholar
  44. 44.
    Urata N, Mori K, Ikeuchi H (1976) Behavior of bath and molten metal in alu-minium electrolytic cell. Keikinzoku 26(11):573-600Google Scholar
  45. 45.
    Sneyd AD, Wang A (1994) Interfacial instability due to MHD mode coupling in aluminium reduction cells. J Fluid Mech 263:343-359MATHCrossRefGoogle Scholar
  46. 46.
    Moreau R, Ewans JW (1984) An analysis of the hydrodynamics of aluminium reduction cells. J Electrochemical Society 131(10):2251-2259CrossRefGoogle Scholar
  47. 47.
    Bojarevics V, Romerio MV (1994) Long waves instability of liquid metal-electrolyte interface in aluminium electrolysis cells: a generalization of Sele’s criterion. Eur J Mech B/Fluids 13:33-56MATHMathSciNetGoogle Scholar
  48. 48.
    Bojarevics V (1998) Nonlinear waves with electromagnetic interaction in alu-minium electrolysis cells. In: Progress Fluid Flow Research: Turbulence and Applied MHD. AIAA Chapter 58, pp 833-848Google Scholar
  49. 49.
    Sun H, Zikanov O, Finlayson BA, Ziegler DP (2005) The influence of the basic flow and interface deformation on stability of Hall-Herault cells. Light Metals 2005, TMS, pp 437-441Google Scholar
  50. 50.
    Dupuis M, Bojarevics V (2005) Weakly coupled thermo-electric and MHD math-ematical models of an aluminium electrolysis cell. Light Metals 2005, TMS, pp 449-454Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Valdis Bojarevics
    • 1
  • Koulis Pericleous
    • 1
  1. 1.University of Greenwich, CMSPark RowUK

Personalised recommendations