Skip to main content

Numerical Modelling for Electromagnetic Processing of Materials

  • Chapter
Magnetohydrodynamics

Part of the book series: Fluid Mechanics And Its Applications ((FMIA,volume 80))

Electromagnetic processing of materials (EPM) is one of the most widely practiced and fast growing applications of magnetic and electric forces to fluid flow. EPM is encountered in both industrial processes and laboratory investigations. Applications range in scale from nano-particle manipulation to tonnes of liquid metal treated in the presence of various configurations of magnetic fields. Some of these processes are specifically designed and made possible by the use of the electromagnetic force, like the magnetic levitation of liquid droplets, whilst others involve electric currents essential for electrothermal or electrochemical reasons, for instance, in electrolytic metal production and in induction melting. An insight for the range of established and novel EPM applications can be found in the review presented by Asai [1] in the EPM-2003 conference proceedings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asai S(2003) Challenging of EPM in economic mass production, nano-technology and environment protection. In: Proc 4th Int Conf Electodyn Proc Materials, Lyon:1-8

    Google Scholar 

  2. Jaluria Y (2001) Fluid flow phenomena in materials processing. J Fluids Eng 123:173-210

    Article  Google Scholar 

  3. Okress E, Wroughton D, Comenetz G, Brace P, Kelly J (1952) Electromagnetic levitation of solid and molten metals. J Appl Phys 23:545-552

    Article  Google Scholar 

  4. Schwartz E, Szekely J, Ilegbusi OJ, Zong J-H, Egry I (1991) The computation of the electromagnetic force fields and transport phenomena in levitated metallic droplets in the microgravity environment. In: MHD in process metallurgy, TMS, pp 81-87

    Google Scholar 

  5. Mestel AJ (1982) Magnetic levitation of liquid metals. J Fluid Mech 117:27-43

    Article  MATH  MathSciNet  Google Scholar 

  6. Szekely J, Schwartz E (1994) Perspectives on EM levitation in space experimen-tation. In: International Symposium on Electromagnetic Processing of Materials, ISIJ, Nagoya, pp 9-14

    Google Scholar 

  7. Li BQ (1994) The transient magnetohydrodynamic phenomena in electromag-netic levitation process. Int J Engng Sci 32:1315-1336

    Article  MATH  Google Scholar 

  8. Hyers RW, Trapaga G, Abedian B (2003) Laminar-turbulent transition in an electromagnetically levitated droplet. Metall Materials Trans B 34:29

    Article  Google Scholar 

  9. Bojarevics V, Pericleous K (2003) Modelling electromagnetically levitated liquid droplet oscillations. ISIJ Int 43(6):890-898

    Article  Google Scholar 

  10. Sneyd AD, Moffatt HK (1982) Fluid dynamical aspects of the levitation melting process. J Fluid Mech 117:45-70

    Article  MATH  MathSciNet  Google Scholar 

  11. Gagnoud A, Brancher JP (1985) Modelling of coupled phenomena in electro-magnetic levitation. IEEE Trans Magn 21:2424-2427

    Article  Google Scholar 

  12. Smythe R (1989) Static and Dynamic Electricity. Hemisphere, New York

    Google Scholar 

  13. Bojarevics V, Pericleous K, Cross M (2000) Modelling the dynamics of the semi-levitation melting. Metall Materials Trans B 31:179-189

    Article  Google Scholar 

  14. Cummings DL, Blackburn DA (1991) Oscillations of magnetically levitated aspherical droplets. J Fluid Mech 224:395-416

    Article  MATH  Google Scholar 

  15. Bratz A, Egry I (1995) Surface oscillations of electromagnetically levitated vis-cous metal droplets. J Fluid Mech 298:341-359

    Article  MATH  Google Scholar 

  16. Bojarevics V, Pericleous K (2001) Magnetic levitation fluid dynamics. Magne-tohydrodynamics 37:93-102

    Google Scholar 

  17. Enokizono M, Todaka T, Yokoji K, Wada Y, Matsumoto I (1995) Three dimen-sional moving simulation of levitation melting method. IEEE Trans Magn 31:1869-1872

    Article  Google Scholar 

  18. Winstead CH, Gazzerro PC, Hoburg JF (1998) Surface-coupled modeling of magnetically confined liquid metal in three-dimensional geometry. Metall Mate-rials Trans B 29:275-281

    Article  Google Scholar 

  19. Priede J, Gerbeth G, Mikelsons A, Gelfgat Y (2000) Instabilities of electromag-netically levitated bodies and their prevention. In: Proceedings of the 3rd Inter-national Symposium on Electromagnetic Processing Materials, ISIJ, Nagoya, pp 352-357

    Google Scholar 

  20. Yasuda H, Ohnaka I, Ninomiya Y, Ishii R, Fujita S, Kishio K (2003) Solidifica-tion behavior in the melt levitated by simultaneous imposition of alternative and high static magnetic fields. In: Proceedings of the 4th International Symposium on Electromagnetic Processing Materials, Lyon, pp 459-463

    Google Scholar 

  21. Gillon P (2000) Processing of materials with high DC magnetic field gradi-ents. In: Proceedings of the 3rd International Symposium on Electromagnetic Processing Materials, ISIJ, Nagoya, pp 635-640

    Google Scholar 

  22. Egry I, Diefenbach A, Dreier W, Piller J (2001) Containerless processing in space - thermophysical property measurements using electromagnetic levitation. Int J Thermophys 22:569-578

    Article  Google Scholar 

  23. Ikezoe Y, Hirota N, Nakgawa J, Kitazawa K (1998) Making water levitate. Nature 393:749-750

    Article  Google Scholar 

  24. Motokawa M (2000) Orientation and levitation effects in high magnetic fields. In: Proceedings of the 3rd International Symposium on Electromagnetic Processing Materials, ISIJ, Nagoya, pp 612-617

    Google Scholar 

  25. Brooks RF, Day AP (1999) Observations of the effects of oxide skins on the oscillations of EM levitated metal droplets. Int J Thermophys 20:1041-1050

    Article  Google Scholar 

  26. Feng ZC, Leal LG (1995) Translational instability of a bubble undergoing shape oscillations. Phys Fluids 7:1325-1336

    Article  MATH  Google Scholar 

  27. Tadano H, Kainuma K, Take T, Shinokura T, Hayashi S (2000) Vacuum melting with cold crucible levitation melting furnaces. In: Proceedings of the 3rd Inter-national Symposium on Electromagnetic Processing Materials, ISIJ, Nagoya, pp 277-282

    Google Scholar 

  28. Bernier F, Vogt M, Muehlbauer A (2000) Numerical calculations of the thermal behaviour and the melt flow in induction furnace with cold crucible. In: Pro-ceedings of the 3rd International Symposium on Electromagnetic Processing Materials, ISIJ, Nagoya, pp 283-288

    Google Scholar 

  29. Harding RA, Wickins M, Bojarevics V, Pericleous K (2004) The development and experimental validation of a numerical model of an induction skull melting furnace. Metall Materials Trans B 35:785-803

    Google Scholar 

  30. Gillon P (2000) Processing of materials with high DC magnetic field gradi-ents. In: Proceedings of the 3rd International Symposium on Electromagnetic Processing Materials, ISIJ, Nagoya, pp 635-640

    Google Scholar 

  31. Toh T, Yamamura H, Wakoh M, Takeuchi E (2003) Inclusion behavior in cold crucible levitation melting and its applications to cleanliness evaluation. In: Proceedings of the 4th International Conference on Electromagnetic Processing Materials, Lyon, pp 226-231

    Google Scholar 

  32. Tanaka T, Kurita K, Kuroda A (1991) Mathematical modeling for electromag-netic field and shaping of melts in cold crucibles. Liquid Metal Flows ASME FED 115:49-54

    Google Scholar 

  33. Enokizono M, Todaka T, Matsumoto I, Wada Y (1993) Levitation melting appa-ratus with flux concentration cap. IEEE Magn 29 (6):2968-2970

    Article  Google Scholar 

  34. Baake E, Muehlbauer A, Jakowitsch A, Andree W (1995) Extension of the k − ε model for the numerical simulation of the melt flow in induction crucible furnaces. Metall Mater Trans B 26:529-536

    Article  Google Scholar 

  35. Baake E, Umbrashko A, Nacke B, Jakovics A, Bojarevics A (2003) Experimental investigations and LES modelling of the turbulent melt flow and temperature distribution in the cold crucible induction furnace. In: Proceedings of the 4th International Conference on Electromagnetic Processing Materials, Lyon, pp 214-219

    Google Scholar 

  36. Fukumoto H, Hosokawa Y, Ayata K, Morishita M (1991) Numerical simulation of meniscus shape considering internal flow effects. MHD in Process Metallurgy. Miner, Met Mater Soc:21-26

    Google Scholar 

  37. Kageyama R, Evans JW (1998) A mathematical model for the dynamic behav-iour of melts subjected to electromagnetic forces. Part 1. Metall Mater Trans B 29:919-928

    Article  Google Scholar 

  38. Wilcox DC (1998) Turbulence Modelling for CFD. DCW Industries, La Canada, CA

    Google Scholar 

  39. Bojarevics A, Bojarevics V, Gelfgat J, Pericleous K (1999) Liquid metal turbu-lent flow dynamics in a cylindrical container with free surface: experiment and numerical analysis. Magnetohydrodynamics 35:258-277

    Google Scholar 

  40. Widlund O (2000) Modelling of magnetohydrodynamic turbulence. Ph.D. thesis. Royal Institute of Technology, Stockholm, Sweden, ISSN 0348-467X

    Google Scholar 

  41. Widlund O (2002) Draft of K − ω − α closure for modeling of MHD turbulence (unpublished)

    Google Scholar 

  42. Mei CC (1989) Applied dynamics of ocean surface waves. World Scientific

    Google Scholar 

  43. Von Kaenel R, Antille JP (1996) Magnetohydrodynamic stability in alumina reduction cells. Travaux 23(27):285-297

    Google Scholar 

  44. Urata N, Mori K, Ikeuchi H (1976) Behavior of bath and molten metal in alu-minium electrolytic cell. Keikinzoku 26(11):573-600

    Google Scholar 

  45. Sneyd AD, Wang A (1994) Interfacial instability due to MHD mode coupling in aluminium reduction cells. J Fluid Mech 263:343-359

    Article  MATH  Google Scholar 

  46. Moreau R, Ewans JW (1984) An analysis of the hydrodynamics of aluminium reduction cells. J Electrochemical Society 131(10):2251-2259

    Article  Google Scholar 

  47. Bojarevics V, Romerio MV (1994) Long waves instability of liquid metal-electrolyte interface in aluminium electrolysis cells: a generalization of Sele’s criterion. Eur J Mech B/Fluids 13:33-56

    MATH  MathSciNet  Google Scholar 

  48. Bojarevics V (1998) Nonlinear waves with electromagnetic interaction in alu-minium electrolysis cells. In: Progress Fluid Flow Research: Turbulence and Applied MHD. AIAA Chapter 58, pp 833-848

    Google Scholar 

  49. Sun H, Zikanov O, Finlayson BA, Ziegler DP (2005) The influence of the basic flow and interface deformation on stability of Hall-Herault cells. Light Metals 2005, TMS, pp 437-441

    Google Scholar 

  50. Dupuis M, Bojarevics V (2005) Weakly coupled thermo-electric and MHD math-ematical models of an aluminium electrolysis cell. Light Metals 2005, TMS, pp 449-454

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Bojarevics, V., Pericleous, K. (2007). Numerical Modelling for Electromagnetic Processing of Materials. In: Magnetohydrodynamics. Fluid Mechanics And Its Applications, vol 80. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4833-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-4833-3_22

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-4832-6

  • Online ISBN: 978-1-4020-4833-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics