Skip to main content

Velocity Measurement Techniques for Liquid Metal Flows

  • Chapter
Magnetohydrodynamics

Part of the book series: Fluid Mechanics And Its Applications ((FMIA,volume 80))

Analysis and control of fluid flows, often subsidiary to industrial design issues, require measurements of the flow field. For classical transparent fluids such as water or gas a variety of well-developed techniques (laser Doppler and particle image velocimetry, Schlieren optics, interferometric techniques, etc.) have been established. In contrast, the situation regarding opaque liquids still lacks almost any commercial availability. Metallic and semiconductor melts often pose additional problems of high temperature and chemical aggressiveness, rendering any reliable determination of the flow field a challenging task. This review intends to summarise different approaches suitable for velocity measurements in liquid metal flows and to discuss perspectives, particularly in view of some recent developments (ultrasound, magnetic tomography). Focusing mainly on local velocity measurements, it is subsequently distinguished between invasive and non-invasive methods, leaving entirely aside the acquisition of temperature, pressure, and concentration, for which [1] may serve as a comprehensive reference.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brusey BW, Brussiere JF, Dubois M, Moreau A (eds) (1999) Advanced Sensors for Metal Processing. Canadian Institute of Mining, Metallurgy and Petroleum, Montreal

    Google Scholar 

  2. Tallbäck GR, Lavers JD, Beitelman LS (2003) Simulation and measurement of EMS induced fluid flow in billet/bloom casting systems. In: Asai S, Fautrelle Y, Gillon P (eds) Proceedings of the 4th International Symposium on Electromagnetic Processing of Materials, Lyon, France, pp 154-159

    Google Scholar 

  3. Taniguchi S, Maitake K, Okubo M, Ando T, Ueno K (2003) Rotary stirring of liquid metal without free surface deformation by combination of rotational and vertical traveling magnetic fields. ibid, pp 339-343

    Google Scholar 

  4. Szekely J, Chang CW, Ryan RE (1977) The measurement and prediction of the melt velocities in a turbulent, electromagnetically driven recirculating low melting alloy system. Metal Trans 8B:333-338

    Google Scholar 

  5. Moreau R (1978) Local and instantaneous measurements in liquid metal MHD. Proc Dynamic Flow Conf, pp 65-79

    Google Scholar 

  6. Branover H, Gelfgat YM, Tsinober AB, Shtern AB, Shcherbinin EV (1966) The application of Pitot and Prandtl tubes in magnetohydrodynamic experiments. Magnetohydrodynamics 2:55-58

    Google Scholar 

  7. Cramer A, Gerbeth G, Terhoeven P, Krätzschmar A (2004) Fluid velocity mea-surements in electro-vortical flows. Mat and Manufact Processes 19:665-678

    Article  Google Scholar 

  8. Mates SP, Settles GS (1995) A flow visualization study of the gas dynamics of liquid metal atomization nozzles. In: Proceedings of the International Conference on Powder Metallurgy and Particulate Materials, Seattle, USA

    Google Scholar 

  9. Griffiths RT, Nicol AA (1965) A fibre flowmeter suitable for very low flow rates. J Sci Instrum 42:797-799

    Article  Google Scholar 

  10. Zhilin VG, Zvyagin KV, Ivochkin YP, Oksman AA (1989) Diagnostics of liquid metal flows using fibre-optic velocity sensor. In: Lielpeteris M, Moreau R (eds) Liquid Metal Magnetohydrodynamics, Kluwer Academic, Dordrecht, 373-379

    Google Scholar 

  11. Eckert S, Gerbeth G, Witke W (2000) A new mechano-optical technique to measure local velocities in opaque fluids. Flow Meas Instrum 11:71-78

    Article  Google Scholar 

  12. Sajben M (1965) Hot wire anemometer in liquid mercury. Rev Sci Instrum 36:945-953

    Article  Google Scholar 

  13. Trakas C, Tabeling P, Chabrerie JP (1983) Low-velocity calibration of hot-film sensors in mercury. J Phys E: Sci Instrum 16:568-570

    Article  Google Scholar 

  14. Argyropoulos SA (2000) Measuring velocity in high-temperature liquid metals: a review. Skand J Metallurgy 30:273-285

    Article  Google Scholar 

  15. Reed CB, Picologlou BF, Dauzvardis PV, Bailey JL (1986) Techniques for measurement of velocity in liquid-metal MHD flows. Fusion Technol 10:813-821

    Google Scholar 

  16. Robinson T, Larsson K (1973) An experimental investigation of a magnetically driven rotating liquid-metal flow. J Fluid Mech 60:641-664

    Article  Google Scholar 

  17. Alemany A, Moreau R, Sulem PL, Frisch U (1979) Influence of an external magnetic field on homogeneous turbulence. J de Méchanique 18:277-313

    Google Scholar 

  18. Petrović DV, Vukoslavcević PV, Wallace JM (2003) The accuracy of turbu-lent velocity component measurements by multi-sensor hot wire probes: a new approach to an old problem. Exp Fluids 34:130-139

    Google Scholar 

  19. Faraday M (1832) Experimental researches in electricitysecond series (Bakerian lecture). Phil Trans Roy Soc 175:197-244

    Google Scholar 

  20. Kolin A (1943) Electromagnetic method for the determination of velocity dis-tribution in fluid flow. Phys Rev 63:218-219

    Google Scholar 

  21. Kolin A (1944) Electromagnetic velometry. I. A method for the determination of fluid velocity distribution in space and time. J Appl Phys 15:150-164

    Google Scholar 

  22. Ricou R, Vives C (1982) Local velocity and mass transfer measurements in molten metals using an incorporated probe. Int J Heat Mass Transfer 25:1579-1588

    Article  Google Scholar 

  23. Weissenfluh T (1985) Probes for local velocity and temperature measurements in liquid metal flow. Int J Heat Mass Transfer 28:1563-1574

    Article  Google Scholar 

  24. Tsinober A, Kit E, Teitel M (1987) On the relevance of the potential-difference method for turbulence measurements. J Fluid Mech 175:447-461

    Article  Google Scholar 

  25. Gelfgat YM, Gelfgat AY (2004) Experimental and numerical study of rotating magnetic field driven flow in cylindrical enclosures with different aspect ratios. Magnetohydrodynamics 40:147-160

    Google Scholar 

  26. Barz RU, Gerbeth G, Wunderwald U, Buhrig E, Gelfgat YM (1997) Modelling of the isothermal melt flow due to rotating magnetic fields in crystal growth. J Cryst Growth 180:410-421

    Article  Google Scholar 

  27. Grossman LM, Charwat AF (1952) The measurement of turbulent velocity fluctuations by the method of magnetic induction. Rev Sci Instrum 23:741-747

    Article  Google Scholar 

  28. Bojarevics A, Bojarevics V, Gelfgat YM, Pericleous K (1999) Liquid metal tur-bulent flow dynamics in a cylindrical container with free surface: experiment and numerical analysis. Magnetohydrodynamics 35:258-277

    Google Scholar 

  29. Kolesnikov YB, Tsinober AB (1972) Two-dimensional flow behind a cylinder. Magnetohydrodynamics 8:300-307

    Google Scholar 

  30. Eckert S, Gerbeth G, Witke W, Langenbrunner H (2001) MHD turbulence mea-surements in a sodium channel flow exposed to a transverse magnetic field. Int J Heat Fluid Flow 22:358-364

    Article  Google Scholar 

  31. Burr U, Barleon L, Müller U, Tsinober AB (2000) Turbulent transport of momentum and heat in magnetoydrodynamic rectangular duct flow with strong sidewall jets. J Fluid Mech 406:247-279

    Article  MATH  Google Scholar 

  32. Davoust L, Cowley MD, Moreau R, Bolcato R (1999) Buoyancy-driven convection with a uniform magnetic field. Part 2. Experimental investigation. J Fluid Mech 400:59-90

    Article  MATH  Google Scholar 

  33. Messadek K, Moreau R (2002) An experimental investigation of MHD quasi two-dimensional turbulent shear flows. J Fluid Mech 456:137-159

    Article  MATH  Google Scholar 

  34. Bolonev N, Charenko A, Eidelmann A (1976) About the correction of turbulence spectra measured using conductivity anemometers. Ing Phys J 2:243-247 (in Russian)

    Google Scholar 

  35. Remenieras G, Hermant C (1954) Mesure électromagnétique des vitesses dans les liquides. Houille Blanche 9:732-746

    Google Scholar 

  36. Cramer A, Varshney K, Gundrum T, Gerbeth G (2006) Experimental study on the sensitivity and accuracy of electric potential local flow measurements. Flow Meas Instrum 17:1-11

    Article  Google Scholar 

  37. Johnson SA, Greenleaf JF, Tanaka M, Flandro G (1977) Reconstructing three-dimensional temperature and fluid velocity vector fields from acoustic transmis-sion measurements. ISA Trans 16:3-15

    Google Scholar 

  38. Atkinson P (1976) A fundamental interpretation of ultrasonic Doppler velocimeters. Ultrasound Med Biol 2:107-111

    Article  Google Scholar 

  39. Takeda Y (1986) Velocity profile measurement by ultrasound Doppler shift method. Int J Heat Fluid Flow 7:313-318

    Article  Google Scholar 

  40. Takeda Y (1991) Development of an ultrasound velocity profile monitor. Nucl Eng Design 126:277-284

    Article  Google Scholar 

  41. Takeda Y (1987) Measurement of velocity profile of mercury flow by ultrasound Doppler shift method. Nucl Technol 79:120-124

    Google Scholar 

  42. Brito D, Nataf H-C, Cardin P, Aubert J, Masson JP (2001) Ultrasonic Doppler velocimetry in liquid gallium. Exp Fluids 31:653-663

    Article  Google Scholar 

  43. Eckert S, Gerbeth G (2002) Velocity measurements in liquid sodium by means of ultrasound Doppler velocimetry. Exp Fluids 32:542-546

    Article  Google Scholar 

  44. Boehmer LS, Smith RW (1976) Ultrasonic instrument for continuous measure-ment of sodium levels in fast breeder reactors. IEEE Trans Nucl Sci 23:359-362

    Article  Google Scholar 

  45. Liu Y, Lynnworth LC, Zimmerman MA (1998) Buffer waveguides for flow measurement in hot fluids. Ultrasonics 36:305-315

    Article  Google Scholar 

  46. Jen C-K, Legoux J-G, Parent L (2000) Experimental evaluation of clad metal-lic buffer rods for high temperature ultrasonic measurements. NDT&E In 33:145-153

    Article  Google Scholar 

  47. Gelles IL (1966) Optical-fiber ultrasonic delay lines. J Acoust Soc Am 39:1111-1119

    Article  Google Scholar 

  48. Eckert S, Gerbeth G, Melnikov VI (2003) Velocity measurements at high temperatures by ultrasound Doppler velocimetry using an acoustic wave guide. Exp Fluids 35:381-388

    Article  Google Scholar 

  49. Eckert S, Gerbeth G, Gundrum T, Stefani F (2005) Velocity measurements in metallic melts. In: Proceedings of2005 ASME FED Summer Meeting, FEDSM2005-77089

    Google Scholar 

  50. Cramer A, Zhang C, Eckert S (2004) Local flow structures in liquid metals measured by ultrasonic Doppler velocimetry. Flow Meas Instrum 15:145-153

    Article  Google Scholar 

  51. Takeda Y (1999) Quasi-periodic state and transition to turbulence in a rotating Couette system. J Fluid Mech 389: 81-99

    Article  MATH  Google Scholar 

  52. Takeda Y, Fischer WE, Sakakibara J (1993) Measurement of energy spectral density of a flow in a rotating Couette system. Phys Rev Lett 70:3569-3571

    Article  Google Scholar 

  53. Mashiko T, Tsuji Y, Mizuno T, Sano M (2004) Instantaneous measurement of velocity fields in developed thermal turbulence in mercury. Phys Rev E 69:036306

    Article  Google Scholar 

  54. Tsuji Y, Mizuno T, Mashiko T, Sano M (2005) Mean wind in convective turbulence of mercury. Phys Rev Lett 94:034501

    Article  Google Scholar 

  55. Eckert S, Willers B, Gerbeth G (2005) Measurements of the bulk velocity during solidification of metallic alloys. Metall Mater Trans A 36:267-270

    Article  Google Scholar 

  56. Takeda Y, Kikura H, Bauer G (1998) Flow measurement in a SINQ mockup target using mercury. In: Proceedings of 1998 ASME FED Summer Meeting, FEDSM98-5057

    Google Scholar 

  57. Zhang C, Eckert S, Gerbeth G (2005) Experimental study of a single bubble motion in a liquid metal column exposed to a DC magnetic field. Int J Multi-phase Flow 31:824-842

    Article  MATH  Google Scholar 

  58. Szekely J (1964) Experimental study of the rate of metal mixing in an openhearth furnace. Journal ISIJ 202:505-508

    Google Scholar 

  59. Stewart MJ, Weinberg F (1972) Fluid flow in liquid metals. Experimental observations. J Cryst Growth 12:228-238

    Article  Google Scholar 

  60. Kakimoto K, Eguchi M, Watanabe H, Hibiya T (1988) Direct observation by X-ray radiography of convection of molten silicon in the Czochralski growth method. J Cryst Growth 88:365-370

    Article  Google Scholar 

  61. Campbell TA, Koster JN (1994) Visualization of liquid/solid interface morpholo-gies in gallium subject to natural convection. J Cryst Growth 140:414-425

    Article  Google Scholar 

  62. Campbell TA, Koster JN (1995) Radioscopic visualization of Indium Anti-monide growth by the vertical Bridgman-Stockbarger technique. J Cryst Growth 147:408-410

    Article  Google Scholar 

  63. Koster JN, Seidel T, Derebail R (1997) A radioscopic technique to study con-vective fluid dynamics in opaque liquid metals. J Fluid Mech 343:29-41

    Article  Google Scholar 

  64. Derebail R, Koster JN (1998) Visualization study of melting and solidification in convecting hypoeutectic Ga-In alloy. Int J Heat Mass Transfer 41:2537-2548

    Article  Google Scholar 

  65. Saito Y, Mishima K, Tobita Y, Suzuki T, Matsubayashi M (2005) Measurements of liquid-metal two-phase flow by using neutron radiography and electrical con-ductivity probe. Exp Therm Fluid Sci 29:323-330

    Article  Google Scholar 

  66. Saito Y, Mishima K, Tobita Y, Suzuki T, Matsubayashi M, Lim IC, Cha JE (2005) Application of high frame-rate neutron radiography to liquid-metal two-phase flow research. Nucl Instrum Meth Phys Res A 542:168-174

    Article  Google Scholar 

  67. Hämäläinen M, Hari R, Ilmoniemi RJ, Knuutila J, Lounasmaa OV (1993) Mag-netoencephalography theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev Mod Phys 65:413-497

    Article  Google Scholar 

  68. Köhler KU, Andrzejewski P, Julius E, Haubrich H (1994) Measurements of steel flow in the mould. In: Asai S (ed) Proceedings of International Symposium on Electromagnetic Processing of Materials, Nagoya, Japan, pp 344-349

    Google Scholar 

  69. Stefani F, Gerbeth G (1999) Velocity reconstruction in conducting fluids from magnetic field and electric potential measurements. Inverse Problems 15:771-786

    Article  MathSciNet  Google Scholar 

  70. Stefani F, Gerbeth G (2000) A contactless method for velocity reconstruction in electrically conducting fluids. Meas Sci Technol 11:758-765

    Article  Google Scholar 

  71. Stefani F, Gundrum T, Gerbeth G (2004) Contactless inductive flow tomography. Phys Rev E 70:056306

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Eckert, S., Cramer, A., Gerbeth, G. (2007). Velocity Measurement Techniques for Liquid Metal Flows. In: Magnetohydrodynamics. Fluid Mechanics And Its Applications, vol 80. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4833-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-4833-3_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-4832-6

  • Online ISBN: 978-1-4020-4833-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics