Advertisement

The Birth and Adolescence of MHD Turbulence

  • Keith Moffatt
Part of the Fluid Mechanics And Its Applications book series (FMIA, volume 80)

This essay provides a personal account of the development of the subject of magnetohydrodynamic (MHD) turbulence from its birth in 1950 to its “coming-of-age” in 1971, following the development of mean-field electrodynamics, a major breakthrough of the 1960s. The discussion covers the early ideas based on the analogy with vorticity, the passive vector problem, the suppression of turbulence by an applied magnetic field, and aspects of the turbulent dynamo problem.

Keywords

Magnetic Reynolds Number Homogeneous Turbulence Dynamo Action Dynamo Theory Joule Dissipation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Batchelor GK (1950) On the spontaneous magnetic field in a conducting liquid in turbulent motion. Proc Roy Soc A 201:405-416MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Schlüter A, Biermann L(1950) Interstellare Magnetfelder. Z Naturforsch 5a:237-251Google Scholar
  3. 3.
    Syrovatsky CJ (1957) Magnetohydrodynamics. Uspekhi Fiz Nauk 62:247Google Scholar
  4. 4..
    Cowling TG (1957) Magnetohydrodynamics. Interscience, New York [2nd edn. 1975, Adam Hilger, Bristol]Google Scholar
  5. 5.
    Boldyrev S, Cattaneo F (2004) Magnetic field generation in Kolmogorov turbulence. Phys Rev Lett 92:144501-1445014CrossRefGoogle Scholar
  6. 6.
    Batchelor GK (1959) Small-scale variation of convected quantities like tem-perature in turbulent fluid. Part I. General discussion and the case of small conductivity. J Fluid Mech 5:113-133MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Batchelor GK, Howells ID, Townsend AA (1959) Small-scale variation of con-vected quantities like temperature in turbulent fluid. Part 2. The case of large conductivity. J Fluid Mech 5:134-139MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Moffatt HK (1963) Magnetic eddies in an incompressible viscous fluid of high electrical conductivity. J Fluid Mech 17:225-239MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Grant HL, Stewart RW, Molliet A (1962) Turbulent spectra from a tidal channel. J Fluid Mech 12:241-268MATHCrossRefGoogle Scholar
  10. 10.
    Kolmogorov AN (1962) Précisions sur la structure locale de la turbulence dans un fluide visqueux aux nombres de Reynolds élevés. In: Favre A et al. (eds) La Mécanique de la Turbulence. CNRS, Paris 108:447-451Google Scholar
  11. 11.
    Kovasznay LSG (1960) Plasma turbulence. Rev Mod Phys 32:815-822MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Moffatt HK (1962) Turbulence in conducting fluids. In: Favre A et al. (eds) La Mécanique de la Turbulence. CNRS, Paris 108:395-404Google Scholar
  13. 13.
    Golitsyn G (1960) Fluctuations of magnetic field and current density in turbu-lent flows of weakly conducting fluids. Sov Phys Dokl 132:315-318Google Scholar
  14. 14.
    Moffatt HK (1961) The amplification of a weak applied magnetic field in fluids of moderate conductivity. J Fluid Mech 11:625-635MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Odier P, Pinton J-F, Fauve S (1998) Advection of a magnetic field by a turbulent swirling flow. Phys Rev E 58:7397-7401CrossRefGoogle Scholar
  16. 16.
    Pearson JRA (1959) The effect of uniform distortion on weak homogeneous turbulence. J Fluid Mech 5:274-288MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Saffman PG (1963) On the fine-scale structure of vector fields convected by a turbulent fluid. J Fluid Mech 16:545-572MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Kulsrud RM (1999) A critical review of galactic dynamos. Annn Rev Astron Astrophys 37:37-64CrossRefGoogle Scholar
  19. 19.
    Schekochihin AA, Cowley SC, Taylor SF, Maron JL, McWilliams JC (2004) Simulations of the small-scale turbulent dynamo. Astrophys J 612:276-307CrossRefGoogle Scholar
  20. 20.
    Hattori Y, Moffatt HK (2006) The magnetohydrodynamic evolution of toroidal magnetic eddies. J Fluid Mech 558:253-279MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Murgatroyd W (1953) Experiments on magnetohydrodynamic channel flow. Phil Mag 44:1348-1354Google Scholar
  22. 22.
    Lehnert B (1954) Magnetohydrodynamic waves under the action of the Coriolis force. Astrophys J 119:647-654CrossRefMathSciNetGoogle Scholar
  23. 23.
    Shercliff JA (1965) A textbook of magnetohydrodynamics. Pergamon Press, OxfordGoogle Scholar
  24. 24.
    Nihoul JCJ (1965) The stochastic transform and the study of homogeneous turbulence. Physica 31:141-152MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Moffatt HK (1967) On the suppression of turbulence by a uniform magnetic field. J Fluid Mech 28:571-592CrossRefGoogle Scholar
  26. 26.
    Sommeria J, Moreau R (1982) Why, how, and when, MHD turbulence becomes two-dimensional. J Fluid Mech 118:507-518MATHCrossRefGoogle Scholar
  27. 27.
    Pothérat A, Sommeria J, Moreau R (2000) An effective two-dimensional model for MHD flows with transverse magnetic field. J Fluid Mech 424:75-100MATHCrossRefGoogle Scholar
  28. 28.
    Steenbeck M, Krause F, Rädler K-H (1966) Berechnung der mittleren Lorentz-Feldstärke für ein elektrisch leitendes Medium in turbulenter, durch Coriolis-Kräfte beinfluster Bewegung. Z Naturforsch 21a:369-376Google Scholar
  29. 29.
    Roberts PH, Stix M (1971) The turbulent dynamo: a translation of a series of papers by Krause F., Radler K-H., and Steenbeck M. Tech. Note 60, NCAR, Boulder, ColoradoGoogle Scholar
  30. 30.
    Krause F, Rädler K-H (1980) Mean-field magnetohydrodynamics and dynamo theory. Pergamon Press, Oxford/New York/Toronto/Sydney/Paris/FrankfurtMATHGoogle Scholar
  31. 31.
    Roberts GO (1970) Spatially periodic dynamos. Phil Trans Roy Soc A 266:535-558CrossRefGoogle Scholar
  32. 32.
    Roberts GO (1972) Dynamo action of fluid motions with two-dimensional periodicity. Phil Trans Roy Soc A 271:411-454MATHCrossRefGoogle Scholar
  33. 33.
    Müller U, Stieglitz R, Horanyi S (2004) A two-scale hydromagnetic dynamo experiment. J Fluid Mech 498:31-71MATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Moffatt HK (1970) Turbulent dynamo action at low magnetic Reynolds number. J Fluid Mech 41:435-452MATHCrossRefGoogle Scholar
  35. 35.
    Moffatt HK (1969) The degree of knottedness of tangled vortex lines. J Fluid Mech 35:117-129MATHCrossRefGoogle Scholar
  36. 36.
    Woltjer L (1958) A theorem on force-free magnetic fields. Proc Natl Acad Sci USA 44:489-491MATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    Moreau J-J(1961) Constantes d’un îlot tourbillonnaire en fluide parfait barotrope. C R Acad Sci Paris, 252:2810-2813MATHMathSciNetGoogle Scholar
  38. 38.
    Parker EN (1955) Hydromagnetic dynamo models. Astrophys J 122:293-314CrossRefMathSciNetGoogle Scholar
  39. 39.
    Braginskii SI (1964) Theory of the hydromagnetic dynamo. Sov Phys JETP 20:1462-1471MathSciNetGoogle Scholar
  40. 40.
    Soward AM (1972) A kinematic theory of large magnetic Reynolds number dynamos. Phil Trans Roy Soc A 272:431-462CrossRefGoogle Scholar
  41. 41.
    Moffatt HK (1972) An approach to a dynamic theory of dynamo action in a rotating conducting fluid. J Fluid Mech 53:385-399MATHCrossRefGoogle Scholar
  42. 42.
    Moffatt HK (1978) Magnetic field generation in electrically conducting fluids. Cambridge University Press, CambridgeGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Keith Moffatt
    • 1
  1. 1.Trinity CollegeUK

Personalised recommendations