Advertisement

The Tomato Yellow Leaf Curl Virus Genome and Function of its Proteins

  • Bruno Gronenborn

In the following, an overview on the genome organisation of tomato (yellow) leaf curl viruses will be presented. Also, a brief description of the biological functions of the viral proteins will be given. The nomenclature including acronyms for some TYLCV species was changed since their first description, in the following the ICTV-approved designations given in Stanley et al. (2005) are used. Most data referred to are derived from studies with Tomato yellow leaf curl virus (TYLCV) [GenBank acc. no. X15656] (Navot et al., 1991), Tomato yellow leaf curl Sardinia virus (TYLCSV) [X61153] (Kheyr-Pour et al., 1991), Tomato leaf curl virus (ToLCV) [S53251] (Dry et al., 1993), and Tomato leaf curl New Delhi virus (ToLCNDV) [U15015, U15017] (Padidam et al., 1995), a bipartite TYLCV species.

Tomato (yellow) leaf curl viruses belong to the genus Begomovirus within the family Geminiviridae. Most begomovirus species have a bipartite genome of two circular single-stranded (ss)DNA molecules, DNA-A (2.6–2.8 kbases) and DNA-B (2.5–2.8 kbases). Begomoviruses are transmitted by the whitefly Bemisia tabaci in a circulative and persistent manner. TYLCV and TYLCSV were the first begomoviruses proven to possess a single genomic DNA. Consequently, essential viral functions, otherwise encoded by DNA-B, have to be provided by proteins encoded by the single DNA of TYLCV, TYLCSV, ToLCV, and all other true monopartite tomato (yellow) leaf curl viruses.

Keywords

Proliferate Cell Nuclear Antigen Tomato Yellow Leaf Curl Virus Tomato Leaf Tomato Yellow Leaf Silence Suppressor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akbar Behjatnia, S. A., Dry, I. B., & Ali Rezaian, M. (1998). Identification of the replication-associated protein binding domain within the intergenic region of tomato leaf curl geminivirus. Nucleic Acids Res. 26, 925–931.PubMedGoogle Scholar
  2. Argüello-Astorga, G. R., Guevara-Gonzalez, R. G., Herrera-Estrella, L. R., & Rivera-Bustamante, R. F. (1994). Geminivirus replication origins have a group-specific organization of iterative elements: a model for replication. Virology 203, 90–100.PubMedGoogle Scholar
  3. Argüello-Astorga, G. R. & Ruiz-Medrano, R. (2001). An iteron-related domain is associated to Motif 1 in the replication proteins of geminiviruses: identification of potential interacting amino acid-base pairs by a comparative approach. Arch. Virol. 146, 1465–1485.PubMedGoogle Scholar
  4. Bendahmane, M. (1994). Biologie Moléculaire des Virus TYLCV et WDV. Centre d’Orsay: Université Paris XI.Google Scholar
  5. Bisaro, D. M. (2006). Silencing suppression by geminivirus proteins. Virology 344, 158–168.PubMedGoogle Scholar
  6. Böttcher, B., Unseld, S., Ceulemans, H., Russell, R. B., & Jeske, H. (2004). Geminate structures of African cassava mosaic virus. J. Virol. 78, 6758–6765.PubMedGoogle Scholar
  7. Briddon, R. W. & Stanley, J. (2006). Subviral agents associated with plant single-stranded DNA viruses. Virology 344, 198–210.PubMedGoogle Scholar
  8. Briddon, R. W., Pinner, M. S., Stanley, J., & Markham, P. G. (1990). Geminivirus coat protein gene replacement alters insect specificity. Virology 177, 85–94.PubMedGoogle Scholar
  9. Briddon, R. W., Mansoor, S., Bedford, I. D., Pinner, M. S., Saunders, K., Stanley, J., Zafar, Y., Malik, K. A., & Markham, P. G. (2001). Identification of DNA components required for induction of cotton leaf curl disease. Virology 285, 234–243.PubMedGoogle Scholar
  10. Briddon, R. W., Bull, S. E., Amin, I., Mansoor, S., Bedford, I. D., Rishi, N., Siwatch, S. S., Zafar, Y., Abdel-Salam, A. M., & Markham, P. G. (2004). Diversity of DNA 1: a satellite-like molecule associated with monopartite begomovirus-DNA beta complexes. Virology 324, 462–474.PubMedGoogle Scholar
  11. Campos-Olivas, R., Louis, J. M., Clérot, D., Gronenborn, B., & Gronenborn, A. M. (2002). The structure of a replication initiator unites diverse aspects of nucleic acid metabolism. Proc. Natl. Acad. Sci. USA 99, 10310–10315.PubMedGoogle Scholar
  12. Castillo, A. G., Collinet, D., Deret, S., Kashoggi, A., & Bejarano, E. R. (2003). Dual interaction of plant PCNA with geminivirus replication accessory protein (Ren) and viral replication protein (Rep). Virology 312, 381–394.PubMedGoogle Scholar
  13. Castillo, A. G., Kong, L. J., Hanley-Bowdoin, L., & Bejarano, E. R. (2004). Interaction between a geminivirus replication protein and the plant sumoylation system. J. Virol. 78, 2758–2769.PubMedGoogle Scholar
  14. Chatterji, A., Padidam, M., Beachy, R. N., & Fauquet, C. M. (1999). Identification of replication specificity determinants in two strains of tomato leaf curl virus from New Delhi. J. Virol. 73, 5481–5489.PubMedGoogle Scholar
  15. Chatterji, A., Chatterji, U., Beachy, R. N., & Fauquet, C. M. (2000). Sequence parameters that determine specificity of binding of the replication-associated protein to its cognate site in two strains of tomato leaf curl virus-New Delhi. Virology 273, 341–350.PubMedGoogle Scholar
  16. Chellappan, P., Vanitharani, R., & Fauquet, C. M. (2004). Short interfering RNA accumulation correlates with host recovery in DNA virus-infected hosts, and gene silencing targets specific viral sequences. J. Virol. 78, 7465–7477.PubMedGoogle Scholar
  17. Chellappan, P., Vanitharani, R., & Fauquet, C. M. (2005). MicroRNA-binding viral protein interferes with Arabidopsis development. Proc. Natl. Acad. Sci. USA 102, 10381–10386.PubMedGoogle Scholar
  18. Choi, I. R. & Stenger, D. C. (1995). Strain-specific determinants of beet curly top geminivirus DNA replication. Virology 206, 904–912.PubMedGoogle Scholar
  19. Clérot, D. & Bernardi, F. (2006). DNA helicase activity is associated with the replication initiator protein Rep of tomato yellow leaf curl geminivirus. J. Virol. 80, 11322–11330.PubMedGoogle Scholar
  20. Cohen, S. & Harpaz, I. (1964). Periodic rather than continual acquisition of new tomato virus by its vector, the tobacco whitefly (Bemisia tabaci Gennadius). Entomol. Exp. Appl. 7, 155–166.Google Scholar
  21. Cohen, S. & Nitzany, F. E. (1966). Transmission and host range of the tomato yellow leaf curl virus. Phytopathology 56, 1127–1131.Google Scholar
  22. Cui, X., Li, G., Wang, D., Hu, D., & Zhou, X. (2005). A Begomovirus DNAbeta-encoded protein binds DNA, functions as a suppressor of RNA silencing, and targets the cell nucleus. J. Virol. 79, 10764–10775.PubMedGoogle Scholar
  23. Czosnek, H., Ber, R., Antignus, Y., Cohen, S., Navot, N., & Zamir, D. (1988). Isolation of Tomato Yellow Leaf Curl Virus, a Geminivirus. Phytopathology 78, 508–512.Google Scholar
  24. Desbiez, C., David, C., Mettouchi, A., Laufs, J., & Gronenborn, B. (1995). Rep protein of tomato yellow leaf curl geminivirus has an ATPase activity required for viral DNA replication. Proc. Natl. Acad. Sci. USA 92, 5640–5644.PubMedGoogle Scholar
  25. Dong, X., van Wezel, R., Stanley, J., & Hong, Y. (2003). Functional characterization of the nuclear localization signal for a suppressor of posttranscriptional gene silencing. J. Virol. 77, 7026–7033.PubMedGoogle Scholar
  26. Dry, I. B., Krake, L. R., Rigden, J. E., & Rezaian, M. A. (1997). A novel subviral agent associated with a geminivirus: the first report of a DNA satellite. Proc. Natl. Acad. Sci. USA 94, 7088–7093.PubMedGoogle Scholar
  27. Dry, I. B., Rigden, J. E., Krake, L. R., Mullineaux, P. M., & Rezaian, M. A. (1993). Nucleotide sequence and genome organization of tomato leaf curl geminivirus. J. Gen. Virol. 74, 147–151.PubMedGoogle Scholar
  28. Dyda, F. & Hickman, A. B. (2003). A mob of reps. Structure 11, 1310–1311.PubMedGoogle Scholar
  29. Eagle, P. A., Orozco, B. M., & Hanley-Bowdoin, L. (1994). A DNA sequence required for geminivirus replication also mediates transcriptional regulation. Plant Cell 6, 1157–1170.PubMedGoogle Scholar
  30. Elmer, J. S., Brand, L., Sunter, G., Gardiner, W. E., Bisaro, D. M., & Rogers, S. G. (1988). Genetic analysis of the tomato golden mosaic virus. II. The product of the AL1 coding sequence is required for replication. Nucleic Acids Res. 16, 7043–7060.PubMedGoogle Scholar
  31. Fontes, E. P., Eagle, P. A., Sipe, P. S., Luckow, V. A., & Hanley-Bowdoin, L. (1994a). Interaction between a geminivirus replication protein and origin DNA is essential for viral replication. J. Biol. Chem. 269, 8459–8465.PubMedGoogle Scholar
  32. Fontes, E. P., Gladfelter, H. J., Schaffer, R. L., Petty, I. T., & Hanley-Bowdoin, L. (1994b). Geminivirus replication origins have a modular organization. Plant Cell 6, 405–416.PubMedGoogle Scholar
  33. Frischmuth, S., Frischmuth, T., & Jeske, H. (1991). Transcript mapping of Abutilon mosaic virus, a geminivirus. Virology 185, 596–604.PubMedGoogle Scholar
  34. Goodman, R. M. (1981). Geminiviruses. In E. Kurstak (Ed.), Handbook of Plant Virus Infections and Comparative Diagnosis. Amsterdam: Elsevier/North-Holland Biomedical Press, pp. 879–910.Google Scholar
  35. Gröning, B. R., Hayes, R. J., & Buck, K. W. (1994). Simultaneous regulation of tomato golden mosaic virus coat protein and AL1 gene expression: expression of the AL4 gene may contribute to suppression of the AL1 gene. J. Gen. Virol. 75, 721–726.PubMedGoogle Scholar
  36. Gutierrez, C. (1999). Geminivirus DNA replication. Cell Mol. Life Sci. 56, 313–329.PubMedGoogle Scholar
  37. Gutierrez, C. (2000). DNA replication and cell cycle in plants: learning from geminiviruses. EMBO J. 19, 792–799.PubMedGoogle Scholar
  38. Haley, A., Zhan, X., Richardson, K., Head, K., & Morris, B. (1992). Regulation of the activities of African cassava mosaic virus promoters by the AC1, AC2, and AC3 gene products. Virology 188, 905–909.PubMedGoogle Scholar
  39. Hallan, V. & Gafni, Y. (2001). Tomato yellow leaf curl virus (TYLCV) capsid protein (CP) subunit interactions: implications for viral assembly. Arch. Virol. 146, 1765–1773.PubMedGoogle Scholar
  40. Hanley-Bowdoin, L., Elmer, J. S., & Rogers, S. G. (1988). Transient expression of heterologous RNAs using tomato golden mosaic virus. Nucleic Acids Res. 16, 10511–10528.PubMedGoogle Scholar
  41. Hanley-Bowdoin, L., Settlage, S. B., Orozco, B. M., Nagar, S., & Robertson, D. (2000). Geminiviruses: models for plant DNA replication, transcription, and cell cycle regulation. Crit. Rev. Biochem. Mol. Biol. 35, 105–140.PubMedGoogle Scholar
  42. Hanley-Bowdoin, L., Settlage, S. B., & Robertson, D. (2004). Reprogramming plant gene expression: a prerequisite to geminivirus DNA replication. Mol. Plant Pathol. 5, 149–156.Google Scholar
  43. Harrison, B. D. (1985). Advances in geminivirus research. Annu. Rev. Phytopathol. 23, 55–82.Google Scholar
  44. Hartitz, M. D., Sunter, G., & Bisaro, D. M. (1999). The tomato golden mosaic virus transactivator (TrAP) is a single-stranded DNA and zinc-binding phosphoprotein with an acidic activation domain. Virology 263, 1–14.PubMedGoogle Scholar
  45. Heyraud, F., Matzeit, V., Kammann, M., Schaefer, S., Schell, J., & Gronenborn, B. (1993). Identification of the initiation sequence for viral-strand DNA synthesis of wheat dwarf virus. EMBO J. 12, 4445–4452.PubMedGoogle Scholar
  46. Heyraud-Nitschke, F., Schumacher, S., Laufs, J., Schaefer, S., Schell, J., & Gronenborn, B. (1995). Determination of the origin cleavage and joining domain of geminivirus Rep proteins. Nucleic Acids Res. 23, 910–916.PubMedGoogle Scholar
  47. Hickman, A. B., Ronning, D. R., Kotin, R. M., & Dyda, F. (2002). Structural unity among viral origin binding proteins: crystal structure of the nuclease domain of adeno-associated virus Rep. Mol. Cell 10, 327–337.PubMedGoogle Scholar
  48. Höhnle, M., Höfer, P., Bedford, I. D., Briddon, R. W., Markham, P. G., & Frischmuth, T. (2001). Exchange of three amino acids in the coat protein results in efficient whitefly transmission of a nontransmissible Abutilon mosaic virus isolate. Virology 290, 164–171.PubMedGoogle Scholar
  49. Iyer, L. M., Leipe, D. D., Koonin, E. V., & Aravind, L. (2004). Evolutionary history and higher order classification of AAA + ATPases. J. Struct. Biol. 146, 11–31.PubMedGoogle Scholar
  50. Jupin, I., De Kouchkovsky, F., Jouanneau, F., & Gronenborn, B. (1994). Movement of tomato yellow leaf curl geminivirus (TYLCV): involvement of the protein encoded by ORF C4. Virology 204, 82–90.PubMedGoogle Scholar
  51. Jupin, I., Hericourt, F., Benz, B., & Gronenborn, B. (1995). DNA replication specificity of TYLCV geminivirus is mediated by the amino-terminal 116 amino acids of the Rep protein. FEBS Lett. 362, 116–120.PubMedGoogle Scholar
  52. Kheyr-Pour, A., Bendahmane, M., Matzeit, V., Accotto, G. P., Crespi, S., & Gronenborn, B. (1991). Tomato yellow leaf curl virus from Sardinia is a whitefly-transmitted monopartite geminivirus. Nucleic Acids Res. 19, 6763–6769.PubMedGoogle Scholar
  53. Kheyr-Pour, A., Bananej, K., Dafalla, G. A., Caciagli, P., Noris, E., Ahoonmanesh, A., Lecoq, H., & Gronenborn, B. (2000). Watermelon chlorotic stunt virus from the Sudan and Iran: sequence comparisons and identification of a whitefly-transmission determinant. Phytopathology 90, 629–635.PubMedGoogle Scholar
  54. Kikuno, R., Toh, H., Hayashida, H., & Miyata, T. (1984). Sequence similarity between putative gene products of geminiviral DNAs. Nature 308, 562.PubMedGoogle Scholar
  55. Kim, K. S., Shock, T. L., & Goodman, R. M. (1978). Infection of Phaseolus vulgaris by bean golden mosaic virus: ultrastructural aspects. Virology 89, 22–33.PubMedGoogle Scholar
  56. Kong, L. J., Orozco, B. M., Roe, J. L., Nagar, S., Ou, S., Feiler, H. S., Durfee, T., Miller, A. B., Gruissem, W., Robertson, D., & Hanley-Bowdoin, L. (2000). A geminivirus replication protein interacts with the retinoblastoma protein through a novel domain to determine symptoms and tissue specificity of infection in plants. EMBO J. 19, 3485–3495.PubMedGoogle Scholar
  57. Koonin, E. V. (1993). A common set of conserved motifs in a vast variety of putative nucleic acid-dependent ATPases including MCM proteins involved in the initiation of eukaryotic DNA replication. Nucleic Acids Res. 21, 2541–2547.PubMedGoogle Scholar
  58. Kunik, T., Palanichelvam, K., Czosnek, H., Citovsky, V., & Gafni, Y. (1998). Nuclear import of the capsid protein of tomato yellow leaf curl virus (TYLCV) in plant and insect cells. Plant J. 13, 393–399.PubMedGoogle Scholar
  59. Laufs, J., Jupin, I., David, C., Schumacher, S., Heyraud-Nitschke, F., & Gronenborn, B. (1995). Geminivirus replication: genetic and biochemical characterization of Rep protein function, a review. Biochimie 77, 765–773.PubMedGoogle Scholar
  60. Laufs, J., Traut, W., Heyraud, F., Matzeit, V., Rogers, S. G., Schell, J., & Gronenborn, B. (1995). In vitro cleavage and joining at the viral origin of replication by the replication initiator protein of tomato yellow leaf curl virus. Proc. Natl. Acad. Sci. USA 92, 3879–3883.PubMedGoogle Scholar
  61. Lazarowitz, S. G. & Beachy, R. N. (1999). Viral movement proteins as probes for intracellular and intercellular trafficking in plants. Plant Cell 11, 535–548.PubMedGoogle Scholar
  62. Lazarowitz, S. G., Wu, L. C., Rogers, S. G., & Elmer, J. S. (1992). Sequence-specific interaction with the viral AL1 protein identifies a geminivirus DNA replication origin. Plant Cell 4, 799–809.PubMedGoogle Scholar
  63. Li, Z. H., Zhou, X. P., Zhang, X., & Xie, Y. (2004). Molecular characterization of tomato-infecting begomoviruses in Yunnan, China. Arch. Virol. 149, 1721–1732.PubMedGoogle Scholar
  64. Lin, B., Akbar Behjatnia, S. A., Dry, I. B., Randles, J. W., & Rezaian, M. A. (2003). High-affinity Rep-binding is not required for the replication of a geminivirus DNA and its satellite. Virology 305, 353–363.PubMedGoogle Scholar
  65. Lucioli, A., Noris, E., Brunetti, A., Tavazza, R., Ruzza, V., Castillo, A. G., Bejarano, E. R., Accotto, G. P., & Tavazza, M. (2003). Tomato yellow leaf curl Sardinia virus Rep-derived resistance to homologous and heterologous geminiviruses occurs by different mechanisms and is overcome if virus-mediated transgene silencing is activated. J. Virol. 77, 6785–6798.PubMedGoogle Scholar
  66. Luque, A., Sanz-Burgos, A. P., Ramirez-Parra, E., Castellano, M. M., & Gutierrez, C. (2002). Interaction of geminivirus Rep protein with replication factor C and its potential role during geminivirus DNA replication. Virology 302, 83–94.PubMedGoogle Scholar
  67. Malik, P. S., Kumar, V., Bagewadi, B., & Mukherjee, S. K. (2005). Interaction between coat protein and replication initiation protein of Mung bean yellow mosaic India virus might lead to control of viral DNA replication. Virology 337, 273–283.PubMedGoogle Scholar
  68. Mansoor, S., Khan, S. H., Bashir, A., Saeed, M., Zafar, Y., Malik, K. A., Briddon, R., Stanley, J., & Markham, P. G. (1999). Identification of a novel circular single-stranded DNA associated with cotton leaf curl disease in Pakistan. Virology 259, 190–199.PubMedGoogle Scholar
  69. Morin, S., Ghanim, M., Sobol, I., & Czosnek, H. (2000). The GroEL protein of the whitefly Bemisia tabaci interacts with the coat protein of transmissible and nontransmissible begomoviruses in the yeast two-hybrid system. Virology 276, 404–416.PubMedGoogle Scholar
  70. Morin, S., Ghanim, M., Zeidan, M., Czosnek, H., Verbeek, M., & van den Heuvel, J. F. (1999). A GroEL homologue from endosymbiotic bacteria of the whitefly Bemisia tabaci is implicated in the circulative transmission of tomato yellow leaf curl virus. Virology 256, 75–84.PubMedGoogle Scholar
  71. Mullineaux, P. M., Rigden, J. E., Dry, I. B., Krake, L. R., & Rezaian, M. A. (1993). Mapping of the polycistronic RNAs of tomato leaf curl geminivirus. Virology 193, 414–423.PubMedGoogle Scholar
  72. Navot, N., Pichersky, E., Zeidan, M., Zamir, D., & Czosnek, H. (1991). Tomato yellow leaf curl virus: a whitefly-transmitted geminivirus with a single genomic component. Virology 185, 151–161.PubMedGoogle Scholar
  73. Noris, E., Jupin, I., Accotto, G. P., & Gronenborn, B. (1996). DNA-binding activity of the C2 protein of tomato yellow leaf curl geminivirus. Virology 217, 607–612.PubMedGoogle Scholar
  74. Noris, E., Vaira, A. M., Caciagli, P., Masenga, V., Gronenborn, B., & Accotto, G. P. (1998). Amino acids in the capsid protein of tomato yellow leaf curl virus that are crucial for systemic infection, particle formation, and insect transmission. J. Virol. 72, 10050–10057.PubMedGoogle Scholar
  75. Noris, E., Lucioli, A., Tavazza, R., Caciagli, P., Accotto, G. P., & Tavazza, M. (2004). Tomato yellow leaf curl Sardinia virus can overcome transgene-mediated RNA silencing of two essential viral genes. J. Gen. Virol. 85, 1745–1749.PubMedGoogle Scholar
  76. Orozco, B. M. & Hanley-Bowdoin, L. (1996). A DNA structure is required for geminivirus replication origin function. J. Virol. 70, 148–158.PubMedGoogle Scholar
  77. Orozco, B. M., Miller, A. B., Settlage, S. B., & Hanley-Bowdoin, L. (1997). Functional domains of a geminivirus replication protein. J. Biol. Chem. 272, 9840–9846.PubMedGoogle Scholar
  78. Orozco, B. M., Kong, L. J., Batts, L. A., Elledge, S., & Hanley-Bowdoin, L. (2000). The multifunctional character of a geminivirus replication protein is reflected by its complex oligomerization properties. J. Biol. Chem. 275, 6114–6122.PubMedGoogle Scholar
  79. Padidam, M., Beachy, R. N., & Fauquet, C. M. (1995). Tomato leaf curl geminivirus from India has a bipartite genome and coat protein is not essential for infectivity. J. Gen. Virol. 76, 25–35.PubMedGoogle Scholar
  80. Padidam, M., Beachy, R. N., & Fauquet, C. M. (1996). The role of AV2 (“precoat”) and coat protein in viral replication and movement in tomato leaf curl geminivirus. Virology 224, 390–404.PubMedGoogle Scholar
  81. Palanichelvam, K., Kunik, T., Citovsky, V., & Gafni, Y. (1998). The capsid protein of tomato yellow leaf curl virus binds cooperatively to single-stranded DNA. J. Gen. Virol. 79, 2829–2833.PubMedGoogle Scholar
  82. Pooggin, M., Shivaprasad, P. V., Veluthambi, K., & Hohn, T. (2003). RNAi targeting of DNA virus in plants. Nat. Biotechnol. 21, 131–132.PubMedGoogle Scholar
  83. Pooma, W. & Petty, I. T. (1996). Tomato golden mosaic virus open reading frame AL4 is genetically distinct from its C4 analogue in monopartite geminiviruses. J. Gen. Virol. 77, 1947–1951.PubMedGoogle Scholar
  84. Rigden, J. E., Dry, I. B., Mullineaux, P. M., & Rezaian, M. A. (1993). Mutagenesis of the virion-sense open reading frames of tomato leaf curl geminivirus. Virology 193, 1001–1005.PubMedGoogle Scholar
  85. Rigden, J. E., Krake, L. R., Rezaian, M. A., & Dry, I. B. (1994). ORF C4 of tomato leaf curl geminivirus is a determinant of symptom severity. Virology 204, 847–850.PubMedGoogle Scholar
  86. Rochester, D. E., Kositratana, W., & Beachy, R. N. (1990). Systemic movement and symptom production following agroinoculation with a single DNA of tomato yellow leaf curl geminivirus (Thailand). Virology 178, 520–526.PubMedGoogle Scholar
  87. Rojas, M. R., Jiang, H., Salati, R., Xoconostle-Cazares, B., Sudarshana, M. R., Lucas, W. J., & Gilbertson, R. L. (2001). Functional analysis of proteins involved in movement of the monopartite begomovirus, Tomato yellow leaf curl virus. Virology 291, 110–125.PubMedGoogle Scholar
  88. Saeed, M., Behjatnia, S. A., Mansoor, S., Zafar, Y., Hasnain, S., & Rezaian, M. A. (2005). A single complementary-sense transcript of a geminiviral DNA beta satellite is determinant of pathogenicity. Mol. Plant Microbe Interact. 18, 7–14.PubMedGoogle Scholar
  89. Sanderfoot, A. A. & Lazarowitz, S. G. (1996). Getting it together in plant virus movement: cooperative interactions between bipartite geminivirus movement proteins. Trends Cell Biol. 6, 353–358.PubMedGoogle Scholar
  90. Saunders, K., Bedford, I. D., Briddon, R. W., Markham, P. G., Wong, S. M., & Stanley, J. (2000). A unique virus complex causes Ageratum yellow vein disease. Proc. Natl. Acad. Sci. USA 97, 6890–6895.PubMedGoogle Scholar
  91. Saunders, K., Norman, A., Gucciardo, S., & Stanley, J. (2004). The DNA beta satellite component associated with ageratum yellow vein disease encodes an essential pathogenicity protein (betaC1). Virology 324, 37–47.PubMedGoogle Scholar
  92. Selth, L. A., Dogra, S. C., Rasheed, M. S., Healy, H., Randles, J. W., & Rezaian, M. A. (2005). A NAC Domain protein interacts with tomato leaf curl virus replication accessory protein and enhances viral replication. Plant Cell 17, 311–325.PubMedGoogle Scholar
  93. Settlage, S. B., See, R. G., & Hanley-Bowdoin, L. (2005). Geminivirus C3 protein: replication enhancement and protein interactions. J. Virol. 79, 9885–9895.PubMedGoogle Scholar
  94. Stanley, J. (1995). Analysis of African cassava mosaic virus recombinants suggests strand nicking occurs within the conserved nonanucleotide motif during the initiation of rolling circle DNA replication. Virology 206, 707–712.PubMedGoogle Scholar
  95. Stanley, J. & Latham, J. R. (1992). A symptom variant of beet curly top geminivirus produced by mutation of open reading frame C4. Virology 190, 506–509.PubMedGoogle Scholar
  96. Stanley, J., Bisaro, D. M., Briddon, R. W., Brown, J. K., Fauquet, C. M., Harrison, B. D., Rybicki, E. P., & Stenger, D. C. (2005). Geminiviridae. In C. M. Fauquet, M. A. Mayo, J. Maniloff, U. Desselberger, & L. A. Ball (Eds.), Virus Taxonomy, Eighth Report of the International Committee on Taxonomy of Viruses. London: Elsevier/Academic Press, pp. 301–326.Google Scholar
  97. Sung, Y. K. & Coutts, R. H. (1995). Mutational analysis of potato yellow mosaic geminivirus. J. Gen. Virol. 76, 1773–1780.PubMedGoogle Scholar
  98. Sunter, G. & Bisaro, D. M. (1992). Transactivation of geminivirus AR1 and BR1 gene expression by the viral AL2 gene product occurs at the level of transcription. Plant Cell 4, 1321–1331.PubMedGoogle Scholar
  99. Sunter, G., Gardiner, W. E., & Bisaro, D. M. (1989). Identification of tomato golden mosaic virus-specific RNAs in infected plants. Virology 170, 243–250.PubMedGoogle Scholar
  100. Sunter, G., Hartitz, M. D., Hormuzdi, S. G., Brough, C. L., & Bisaro, D. M. (1990). Genetic analysis of tomato golden mosaic virus: ORF AL2 is required for coat protein accumulation while ORF AL3 is necessary for efficient DNA replication. Virology 179, 69–77.PubMedGoogle Scholar
  101. Townsend, R., Stanley, J., Curson, S. J., & Short, M. N. (1985). Major polyadenylated transcripts of cassava latent virus and location of the gene encoding coat protein. EMBO J. 4, 33–37.PubMedGoogle Scholar
  102. Trinks, D., Rajeswaran, R., Shivaprasad, P. V., Akbergenov, R., Oakeley, E. J., Veluthambi, K., Hohn, T., & Pooggin, M. M. (2005). Suppression of RNA silencing by a geminivirus nuclear protein, AC2, correlates with transactivation of host genes. J. Virol. 79, 2517–2527.PubMedGoogle Scholar
  103. van Wezel, R., Dong, X., Liu, H., Tien, P., Stanley, J., & Hong, Y. (2002). Mutation of three cysteine residues in Tomato yellow leaf curl virus-China C2 protein causes dysfunction in pathogenesis and posttranscriptional gene-silencing suppression. Mol. Plant Microbe Interact. 15, 203–208.Google Scholar
  104. van Wezel, R., Liu, H., Tien, P., Stanley, J., & Hong, Y. (2001). Gene C2 of the monopartite geminivirus Tomato yellow leaf curl virus-China encodes a pathogenicity determinant that is localized in the nucleus. Mol. Plant Microbe Interact. 14, 1125–1128.PubMedGoogle Scholar
  105. Vanitharani, R., Chellappan, P., & Fauquet, C. M. (2005). Geminiviruses and RNA silencing. Trends Plant. Sci. 10, 144–151.PubMedGoogle Scholar
  106. Vanitharani, R., Chellappan, P., Pita, J. S., & Fauquet, C. M. (2004). Differential roles of AC2 and AC4 of cassava geminiviruses in mediating synergism and suppression of posttranscriptional gene silencing. J. Virol. 78, 9487–9498.PubMedGoogle Scholar
  107. Vargason, J. M., Szittya, G., Burgyan, J., & Tanaka Hall, T. M. (2003). Size selective recognition of siRNA by an RNA silencing suppressor. Cell 115, 799–811.PubMedGoogle Scholar
  108. Voinnet, O., Pinto, Y. M., & Baulcombe, D. C. (1999). Suppression of gene silencing: a general strategy used by diverse DNA and RNA viruses of plants. Proc. Natl. Acad Sci. USA 96, 14147–14152.PubMedGoogle Scholar
  109. Wang, H., Hao, L., Shung, C. Y., Sunter, G., & Bisaro, D. M. (2003). Adenosine Kinase Is Inactivated by Geminivirus AL2 and L2 Proteins. Plant Cell 15, 3020–3032.PubMedGoogle Scholar
  110. Wang, H., Buckley, K. J., Yang, X., Buchmann, R. C., & Bisaro, D. M. (2005). Adenosine kinase inhibition and suppression of RNA silencing by geminivirus AL2 and L2 proteins. J. Virol. 79, 7410–7418.PubMedGoogle Scholar
  111. Wartig, L., Kheyr-Pour, A., Noris, E., De Kouchkovsky, F., Jouanneau, F., Gronenborn, B., & Jupin, I. (1997). Genetic analysis of the monopartite tomato yellow leaf curl geminivirus: roles of V1, V2, and C2 ORFs in viral pathogenesis. Virology 228, 132–140.PubMedGoogle Scholar
  112. Xie, Q., Sanz-Burgos, A. P., Hannon, G. J., & Gutierrez, C. (1996). Plant cells contain a novel member of the retinoblastoma family of growth regulatory proteins. EMBO J. 15, 4900–4908.PubMedGoogle Scholar
  113. Yin, Q., Yang, H., Gong, Q., Wang, H., Liu, Y., Hong, Y., & Tien, P. (2001). Tomato yellow leaf curl China virus: monopartite genome organization and agroinfection of plants. Virus Res. 81, 69–76.PubMedGoogle Scholar
  114. Zhan, X. C., Haley, A., Richardson, K., & Morris, B. (1991). Analysis of the potential promoter sequences of African cassava mosaic virus by transient expression of the beta-glucuronidase gene. J. Gen. Virol. 72, 2849–2852.PubMedGoogle Scholar
  115. Zhang, W., Olson, N. H., Baker, T. S., Faulkner, L., Agbandje-McKenna, M., Boulton, M. I., Davies, J. W., & McKenna, R. (2001). Structure of the Maize streak virus geminate particle. Virology 279, 471–477.PubMedGoogle Scholar
  116. Zhou, X., Xie, Y., Tao, X., Zhang, Z., Li, Z., & Fauquet, C. M. (2003). Characterization of DNAbeta associated with begomoviruses in China and evidence for co-evolution with their cognate viral DNA-A. J. Gen. Virol. 84, 237–247.PubMedGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Bruno Gronenborn
    • 1
  1. 1.Institut des Sciences Végétales, C.N.R.SFrance

Personalised recommendations