Movement and localization of Tomato Yellow Leaf Curl Viruses in the Infected Plant

  • Christina Wege

After its release into the phloem of a young leaf by feeding Bemisia tabaci, TYLCV systemically invades most plant organs above and below ground within 1–2 weeks (Ber et al., 1990; Czosnek et al., 1988b; Kheyr-Pour et al., 1994; Michelson et al., 1994; Picó et al., 1999, 2001; Rom et al., 1993). Different virus titers will accumulate depending on the organ type and its position at the plant. In tomato, viral replication and translocation usually precede symptom appearance by days or even weeks. Tolerant tomoto varieties were developed following epidemics of devastating tomato yellow leaf curl disease (TYLCD) in Israel and the Middle East since the first half of last century (Cohen & Antignus, 1994; Czosnek, 1999, and references herein). In tolerant breeding lines, TYLCV spread is almost or fully latent, producing only mild and delayed phenotypic alterations, if at all (Picó et al., 1996; Rom et al., 1993).

In order to understand TYLCD pathogenesis, detailed analyses on transmissibility, symptom induction, and host range of the causative agent named Tomato yellow leaf curl virus were performed in the 1960s (Cohen & Nitzany, 1966). In this study, eight symptomless crops and weed hosts were discovered, which were able to serve as source plants for whitefly inoculation of test plant species. These early findings substantiated the frequently “hidden nature” of the virus upon translocation inside its hosts. Hence, unraveling time course, preferential routes, and final distribution patterns of the virus in the different types of tissues and cells has been attempted in several consecutive studies, whenever more advanced techniques were available.

Keywords

Permeability Magnesium Chlorophyll Cage Recombination 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aloni, R. & Peterson, C. A. (1990). The functional significance of phloem anastomoses in stems of Dahlia pinnata Cav. Planta 182, 583–590.CrossRefGoogle Scholar
  2. Andrianifahanana, M., Lovins, K., Dute, R., Sikora, E., & Murphy, J. F. (1997). Pathway for phloem-dependent movement of Pepper mottle potyvirus in the stem of Capsicum annuum. Phytopathology 87, 892–898.CrossRefPubMedGoogle Scholar
  3. Avery, G. S. (1933). Structure and development of the tobacco leaf. Am. J. Bot. 20, 565–592.CrossRefGoogle Scholar
  4. Ber, R., Navot, N., Zamir, D., Antignus, Y., Cohen, S., & Czosnek, H. (1990). Infection of tomato by the tomato yellow leaf curl virus: susceptibility to infection, symptom development, and accumulation of viral DNA. Arch. Virol. 112, 169–180.CrossRefPubMedGoogle Scholar
  5. Bisaro, D. M. (2006). Silencing suppression by geminivirus proteins. Virology 344, 158–168.CrossRefPubMedGoogle Scholar
  6. Buntin, G. D., Gilbertz, D. A., & Oetting, R. D. (1993). Chlorophyll loss and gas exchange in tomato leaves after feeding injury by Bemisia tabaci (Homoptera: Aleyrodidae). J. Econ. Entom. 86, 517–522.Google Scholar
  7. Castillo, A. G., Collinet, D., Deret, S., Kashoggi, A., & Bejarano, E. R. (2003). Dual interaction of plant PCNA with geminivirus replication accessory protein (Ren) and viral replication protein (Rep). Virology 312, 381–394.CrossRefPubMedGoogle Scholar
  8. Castillo, A. G., Kong, L. J., Hanley-Bowdoin, L., & Bejarano, E. (2004). Interaction between a geminivirus replication protein and the plant sumoylation system.J. Virol. 78, 2758–2769.Google Scholar
  9. Cherif, C. & Russo, M. (1983). Cytological evidence of the association of a geminivirus with the tomato yellow leaf curl disease in Tunisia. Phytopath. Z. 108, 221–225.CrossRefGoogle Scholar
  10. Cohen, S. & Antignus, Y. (1994). Tomato yellow leaf curl virus (TYLCV), a whitefly-borne geminivirus of tomatoes. Adv. Dis. Vector Res. 10, 259–288.Google Scholar
  11. Cohen, S. & Nitzany, F. E. (1966). Transmission and host range of the tomato yellow leaf curl virus. Phytopathology 56, 1127–1131.Google Scholar
  12. Cui, X., Li, G., Wang, D., Hu, D., & Zhou, X. (2005). A begomovirus DNAβ-encoded protein binds DNA, functions as a suppressor of RNA silencing, and targets the cell nucleus. J. Virol. 79, 10764–10775.CrossRefPubMedGoogle Scholar
  13. Cui, X., Tao, X., Xie, Y., Fauquet, C. M., & Zhou, X. (2004). A DNAβ associated with tomato yellow leaf curl China Virus is required for symptom induction. J. Virol. 78, 13966–13974.CrossRefPubMedGoogle Scholar
  14. Czosnek, H. (1999). Tomato yellow leaf curl virus-Israel. AAB Descr. Plant Vir. 368, 1–11.Google Scholar
  15. Czosnek, H. & Navot, N. (1988). Virus detection in squash-blots of plants and insects: applications in diagnostics, epidemiology, and breeding. In A. Mizrahi (Ed.), Biotechnology in Agriculture. New York: Alan R. Liss, fehlt, pp. 83–96.Google Scholar
  16. Czosnek, H., Ber, R., Antignus, Y., Cohen, S., Navot, N., & Zamir, D. (1988a). Isolation of tomato yellow leaf curl virus, a geminivirus. Phytopathology 78, 508–512.CrossRefGoogle Scholar
  17. Czosnek, H., Ber, R., Navot, N., & Zamir, D. (1988b). Detection of tomato yellow leaf curl virus in lysates of plants and insects by hybridization with a viral DNA probe. Plant Dis. 72, 949–951.CrossRefGoogle Scholar
  18. Delatte, H., Dalmon, A., Rist, D., Soustrade, I., Wuster, G., Lett, J. M., Goldbach, R. W., Peterschmitt, M., & Reynaud, B. (2003). Tomato yellow leaf curl virus can be acquired and transmitted by Bemisia tabaci (Gennadius) from tomato fruit. Plant Dis. 87, 1297–1300.CrossRefGoogle Scholar
  19. Ding, B. 1998. Intercellular trafficking through plasmodesmata. Plant Mol. Biol. 38, 279–310.CrossRefPubMedGoogle Scholar
  20. Dong, X., van Wezel, R., Stanley, J., & Hong, Y. (2003). Functional characterization of the nuclear localization signal for a suppressor of posttranscriptional gene silencing. J. Virol. 77, 7026–7033.CrossRefPubMedGoogle Scholar
  21. Esau, K. (1969). Pflanzenanatomie (Plant Anatomy; German edition). Stuttgart/New York: Gustav Fischer Verlag/Wiley.Google Scholar
  22. Fargette, D., Leslie, M., & Harrison, B. D. (1996). Serological studies on the accumulation and localisation of the tomato leaf curl geminiviruses in resistant and susceptible Lycopersicon species and tomato cultivars. Ann. Appl. Biol. 128, 317–328.CrossRefGoogle Scholar
  23. Fondong, V. N., Pita, J. S., Rey, M. E. C., de Kockko, A., Beachy, R. N., & Fauquet, C. M. (2000). Evidence of synergism between African cassava mosaic virus and a new double-recombinant geminivirus infecting cassava in Cameroon. J. Gen. Virol. 81, 287–297.PubMedGoogle Scholar
  24. Fosket, D. E. (1994). Plant Growth and Development. San Diego/New York: Academic Press.Google Scholar
  25. Gafni, Y. (2003). Tomato yellow leaf curl virus, the intracellular dynamics of a plant DNA virus. Mol. Plant Pathol. 4, 9–15.CrossRefGoogle Scholar
  26. Ghanim, M., Morin, S., & Czosnek, H. (2001). Rate of tomato yellow leaf curl virus translocation in the circulative transmission pathway of its vector, the whitefly Bemisia tabaci. Phytopathology 91, 188–196.Google Scholar
  27. Harris, K. F., Pesic-Van Esbroeck, Z., & Duffus, J. E. (1996). Morphology of the sweet potato whitefly, Bemisia tabaci (Homoptera, Aleyrodidae) relative to virus transmission. Zoomorphology 116, 143–156.CrossRefGoogle Scholar
  28. Harrison, B. D. & Robinson, D. J. (1999). Natural genomic and antigenic variation in whitefly-transmitted geminiviruses (Begomoviruses). Annu. Rev. Phytopathol. 37, 369–398.CrossRefPubMedGoogle Scholar
  29. Hehnle, S., Wege, C., & Jeske, H. (2004). The interaction of DNA with the movement proteins of geminiviruses revisited. J. Virol. 78, 7698–7706.CrossRefPubMedGoogle Scholar
  30. Janssen, J. A. M., Tjallingii, W. F., & van Lenteren, J. C. (1989). Electrical recording and ultrastructure of stylet penetretation by the greenhouse whitefly. Entomol. Exp. Appl. 52, 69–81.CrossRefGoogle Scholar
  31. Jeske, H., Lütgemeier, M., & Preiss, W. (2001). Distinct DNA forms indicate rolling circle and recombination-dependent replication of Abutilon mosaic geminivirus. EMBO J. 20, 6158–6167.CrossRefPubMedGoogle Scholar
  32. Jupin, I., De Kouchkovsky, F., Jouanneau, F., & Gronenborn, B. (1994). Movement of tomato yellow leaf curl geminivirus (TYLCV): involvement of the protein encoded by ORF C4. Virology 204, 82–90.CrossRefPubMedGoogle Scholar
  33. Kheyr-Pour, A., Bendahmane, M., Matzeit, V., Accotto, G. P., Crespi, S., & Gronenborn, B. (1991). Tomato yellow leaf curl virus from Sardinia is a whitefly-transmitted monopartite geminivirus. Nucleic Acids Res. 19, 6763–6769.CrossRefPubMedGoogle Scholar
  34. Kheyr-Pour, A., Gronenborn, B., & Czosnek, H. (1994). Agroinoculation of tomato yellow leaf curl virus (TYLCV) overcomes the virus resistance of wild Lycopersicon species. Plant Breed. 112, 228–233.CrossRefGoogle Scholar
  35. Knoblauch, M. & van Bel, A. J. E. (1998). Sieve tubes in action. Plant Cell 10, 35–50.CrossRefGoogle Scholar
  36. Kong, L. J., Orozco, B. M., Roe, J. L., Nagar, S., Ou, S., Feiler, H. S., Durfee, T., Miller, A. B., Gruissem, W., Robertson, D., & Hanley-Bowdoin, L. (2000). A geminivirus replication protein interacts with the retinoblastoma protein through a novel domain to determine symptoms and tissue specificity of infection in plants. EMBO J. 19, 3485–3495.CrossRefPubMedGoogle Scholar
  37. Kunik, T., Mizrachy, L., Citovsky, V., & Gafni, Y. (1999). Characterization of a tomato karyopherin alpha that interacts with the tomato yellow leaf curl virus (TYLCV) capsid protein. J. Exp. Botany 50, 731–732.CrossRefGoogle Scholar
  38. Kunik, T., Palanichelvam, K., Czosnek, H., Citovsky, V., & Gafni, Y. (1998). Nuclear import of the capsid protein of tomato yellow leaf curl virus (TYLCV) in plant and insect cells. Plant J. 13, 393–399.CrossRefPubMedGoogle Scholar
  39. Lapidot, M. & Friedmann, M. (2002). Breeding for resistance to whitefly-transmitted geminiviruses. Ann. Appl. Biol. 140, 109–127.CrossRefGoogle Scholar
  40. Latham, J. R., Saunders, K., Pinner, M. S., & Stanley, J. (1997). Induction of plant cell division by beet curly top virus gene C4. Plant J. 11, 1273–1283.CrossRefGoogle Scholar
  41. Levy, A. & Czosnek, H. (2003). The DNA-B of the non-phloem-limited bean dwarf mosaic virus (BDMV) is able to move the phloem-limited Abutilon mosaic virus (AbMV) out of the phloem, but DNA-B of AbMV is unable to confine BDMV to the phloem. Plant Mol. Biol. 53, 789–803.CrossRefPubMedGoogle Scholar
  42. McGivern, D. R., Findlay, K. C., Montague, N. P., & Boulton, M. I. (2005). An intact RBR-binding motif is not required for infectivity of maize streak virus in cereals, but is required for invasion of mesophyll cells. J. Gen. Virol. 86, 797–801.CrossRefPubMedGoogle Scholar
  43. Michelson, I., Zamir, D., & Czosnek, H. (1994). Accumulation and translocation of tomato yellow leaf curl virus (TYLCV) in a Lycopersicon esculentum breeding line containing the L. chilense TYLCV tolerance gene Ty-1. Phytopathology 84, 928–933.Google Scholar
  44. Michelson, I., Zeidan, M., Zamir, D., & Czosnek, H. (1997). Localization of tomato yellow leaf curl virus (TYLCV) in susceptible and tolerant nearly isogenic tomato lines. In Horticulture Biotechnology in Vitro Culture and Breeding. Proceedings of the third International ISHS Symposium, pp. 407–414.Google Scholar
  45. Moffat, A. (1999). Geminiviruses emerge as serious crop threat. Science 286, 1835.CrossRefGoogle Scholar
  46. Monci, F., Sanchez-Campos, S., Navas-Castillo, J., & Moriones, E. (2002). A natural recombinant between the geminiviruses tomato yellow leaf curl Sardinia virus and tomato yellow leaf curl virus exhibits a novel pathogenic phenotype and is becoming prevalent in Spanish populations. Virology 303, 317–326.CrossRefPubMedGoogle Scholar
  47. Morilla, G., Castillo, A. G., Preiss, W., Jeske, H., & Bejarano, E. R. (2006). A versatile transreplica-tion-based system to identify cellular proteins involved in geminivirus replication. J. Virol. 80, 3624–3633.CrossRefPubMedGoogle Scholar
  48. Morilla, G., Krenz, B., Jeske, H., Bejarano, E. R., & Wege, C. (2004). Tête à tête of tomato yellow leaf curl virus (TYLCV) and tomato yellow leaf curl Sardinia virus (TYLCSV) in single nuclei. J. Virol. 78, 10715–10723.CrossRefPubMedGoogle Scholar
  49. Moriones, E. & Navas-Castillo, J. (2000). Tomato yellow leaf curl virus, an emerging virus complex causing epidemics worldwide. Virus Res. 71, 123–134.CrossRefPubMedGoogle Scholar
  50. Morra, M. R. & Petty, I. T. (2000). Tissue specificity of geminivirus infection is genetically determined. Plant Cell 12, 2259–2270.CrossRefPubMedGoogle Scholar
  51. Münch, E. (1930). Die Stoffbewegungen in der Pflanze. Jena, Germany: Gustav-Fischer-Verlag.Google Scholar
  52. Murant, A. F. & Roberts, I. M. (1979). Virus-like particles in phloem tissues of chervil (Anthriscus cerefolium) infected with carrot red leaf virus. Ann. Appl. Biol. 92, 343–346.CrossRefGoogle Scholar
  53. Navas-Castillo, J., Sanchez-Campos, S., Diaz, J. A., Saez-Alonso, E., & Moriones, E. (1997). First report of tomato yellow leaf curl virus is in Spain: coexistenceof two different geminiviruses in the same epidemic outbreak. Plant Dis. 81, 1461–1461.CrossRefGoogle Scholar
  54. Navas-Castillo, J., Sánchez-Campos, S., Díaz, J. A., Sáez-Alonso, E., & Moriones, E. (1999). Tomato Yellow Leaf Curl Virus-Is causes a novel disease of common bean and severe epidemics in tomato in Spain. Plant Dis. 83, 29–32.CrossRefGoogle Scholar
  55. Navot, N., Ber, R., & Czosnek, H. (1989). Rapid detection of tomato yellow leaf curl virus in squashes of plants and insect vectors. Phytopathology 79, 562–568.CrossRefGoogle Scholar
  56. Navot, N., Pichersky, E., Zeidan, M., Zamir, D., & Czosnek, H. (1991). Tomato yellow leaf curl virus: a whitefly-transmitted geminivirus with a single genomic component. Virology 185, 151–161.CrossRefPubMedGoogle Scholar
  57. Nelson, R. S. & van Bel, A. J. E. (1998). The mystery of virus trafficking into, through and out of vascular tissue. Progr. Bot. 59, 476–533.Google Scholar
  58. Noris, E., Vaira, A. M., Caciagli, P., Masenga, V., Gronenborn, B., & Accotto, G. P. (1998). Amino acids in the capsid protein of tomato yellow leaf curl virus that are crucial for systemic infection, particle formation, and insect transmission. J. Virol. 72, 10050–10057.PubMedGoogle Scholar
  59. Noueiry, A. O., Lucas, W. J., & Gilbertson, R. L. (1994). Two proteins of a plant DNA virus coordinate nuclear and plasmodesmatal transport. Cell 76, 925–932.CrossRefPubMedGoogle Scholar
  60. Opalka, N., Brugidou, C., Bonneau, C., Nicole, M., Beachy, R. N., Yeager, M., & Fauquet, C. (1998). Movement of rice yellow mottle virus between xylem cells through pit membranes. Proc. Natl. Acad. Sci. USA 95, 3323–3328.CrossRefPubMedGoogle Scholar
  61. Oparka, K. J. & Santa Cruz, S. (2000). The great escape: phloem transport and unloading of macromolecules. Ann. Rev. Plant Physiol. Plant Mol. Biol. 51, 323–347.CrossRefGoogle Scholar
  62. Padidam, M., Sawyer, S., & Fauquet, C. M. (1999). Possible emergence of new geminiviruses by frequent recombination. Virology 285, 218–225.CrossRefGoogle Scholar
  63. Palanichelvam, K., Kunik, T., Citovsky, V., & Gafni, Y. (1998). The capsid protein of tomato yellow leaf curl virus binds cooperatively to single-stranded DNA. J. Gen. Virol. 79, 2829–2833.PubMedGoogle Scholar
  64. Pelah, D., Altman, A., & Czosnek, H. (1994). Tomato yellow leaf curl virus DNA in callus cultures derived from infected tomato leaves. Plant Cell Tiss. Org. Cult. 39, 37–42.CrossRefGoogle Scholar
  65. Picó, B., Diez, M. J., & Nuez, F. (1996). Viral diseases causing the greatest economic losses to the tomato crop. II. The tomato yellow leaf curl virus–a review. Sci. Horticult. 67, 151–196.Google Scholar
  66. Picó, B., Díez, M. J., & Nuez, F. (1999). Improved diagnostic techniques for Tomato yellow leaf curl virus in tomato breeding programs. Plant Dis. 83, 1006–1012.CrossRefGoogle Scholar
  67. Picó, B., Ferriol, M., Díez, M. J., & Vinals, F. N. (2001). Agroinoculation methods to screen wild Lycopersicon for resistance to Tomato yellow leaf curl virus. J. Plant Pathol. 83, 215–220.Google Scholar
  68. Pilartz, M. & Jeske, H. (1992). Abutilon mosaic geminivirus double-stranded DNA is packed into minichromosomes. Virology 189, 800–802.CrossRefPubMedGoogle Scholar
  69. Pita, J. S., Fondong, V. N., Sangare, A., Otim-Nape, G. W., Ogwal, S., & Fauquet, C. M. (2001). Recombination, pseudorecombination and synergism of geminiviruses are determinant keys to the epidemic of severe cassava mosaic disease in Uganda. J. Gen. Virol. 82, 655–665.PubMedGoogle Scholar
  70. Pollard, D. G. (1955). Feeding habits of the cotton whitefly, Bemisia tabaci Genn. (Homoptera: Aleyrodidae). Ann. Appl. Biol. 43, 664–671.Google Scholar
  71. Preiss, W. & Jeske, H. (2003). Multitasking in replication is common among geminiviruses. J. Virol. 77, 2972–2980.CrossRefPubMedGoogle Scholar
  72. Rasheed, M. S., Selth, L. A., Koltunow, A. M. G., Randles, J. W., & Rezaian, M. A. (2006). Single-stranded DNA of tomato leaf curl virus accumulates in the cytoplasm of phloem cells. Virology 348, 120–132.CrossRefPubMedGoogle Scholar
  73. Rhee, Y., Gafni, Y., Dingwall, C., & Citovsky, V. (2000). A genetic system for detection of protein nuclear import and export. Nat. Biotech. 18, 433–437.CrossRefGoogle Scholar
  74. Ribeiro, S. G., Ambrozevicius, L. P., Avila, A. C., Bezerra, I. C., Calegario, R. F., Fernandes, J. J., Lima, M. F., de Mello, R. N., Rocha, H., & Zerbini, F. M. (2003). Distribution and genetic diversity of tomato-infecting begomoviruses in Brazil. Arch. Virol. 148, 281–295.CrossRefPubMedGoogle Scholar
  75. Roberts, A. G., Santa Cruz, S., Roberts, I. M., Prior, D. A. M., Turgeon, R., & Oparka, K. J. (1997). Phloem unloading in sink leaves of Nicotiana benthamiana: comparison of a fluorescent solute with a fluorescent virus. Plant Cell 9, 1381–1396.CrossRefPubMedGoogle Scholar
  76. Rojas, M. R., Hagen, C., Lucas, W. J., & Gilbertson, R. L. (2005). Exploiting chinks in the plant’s armor: evolution and emergence of geminiviruses. Annu. Rev. Phytopathol. 43, 361–394.CrossRefPubMedGoogle Scholar
  77. Rojas, M. R., Jiang, H., Salati, R., Xoconostle-Cazares, B., Sudarshana, M. R., Lucas, W. J., & Gilbertson, R. L. (2001). Functional analysis of proteins involved in movement of the monopartite begomovirus, tomato yellow leaf curl virus. Virology 291, 110–125.CrossRefPubMedGoogle Scholar
  78. Rom, M., Antignus, Y., Gidoni, D., Pilowsky, M., & Cohen, S. (1993). Accumulation of tomato yellow leaf curl virus DNA in tolerant and susceptible tomato lines. Plant Dis. 77, 253–257.Google Scholar
  79. Russo, M., Cohen, S., & Martelli, G. P. (1980). Virus-like particles in tomato plants affected by the yellow leaf curl disease. J. Gen. Virol. 49, 209–213.CrossRefGoogle Scholar
  80. Sanchez-Campos, S., Navas-Castillo, J., Camero, R., Soria, C., Díaz, J. A., & Moriones, E. (1999). Displacement of tomato yellow leaf curl virus (TYLCV)-Sr by TYLCV-Is in tomato epidemics in Spain. Phytopathology 89, 1038–1043.CrossRefPubMedGoogle Scholar
  81. Sanz, A. I., Fraile, A., García-Arenal, F., Zhou, X., Robinson, D. J., Khalid, S., Butt, T., & Harrison, B. D. (2000). Multiple infection, recombination and genome relationships among begomovirus isolates found in cotton and other plants in Pakistan. J. Gen. Virol. 81, 1839–1849.PubMedGoogle Scholar
  82. Schnippenkoetter, W. H., Martin, D. P., Willment, J. A., & Rybicki, E. P. (2001). Forced recombination between distinct strains of Maize streak virus. J. Gen. Virol. 82, 3081–3090.PubMedGoogle Scholar
  83. Settlage, S. B., See, R. G., & Hanley-Bowdoin, L. (2005). Geminivirus c3 protein: replication enhancement and protein interactions. J. Virol. 79, 9885–9895.CrossRefPubMedGoogle Scholar
  84. Silva, M. S., Wellink, J., Goldbach, R. W., & van Lent, J. W. M. (2002). Phloem loading and unloading of cowpea mosaic virus in Vigna unguiculata. J. Gen. Virol. 83, 1493–1504.Google Scholar
  85. Sudarshana, M. R., Wang, H. L., Lucas, W. J., & Gilbertson, R. L. (1998). Dynamics of bean dwarf mosaic geminivirus cell-to-cell and long-distance movement in Phaseolus vulgaris revealed, using the green fluorescent protein. Mol. Plant Microbe Interact. 11, 277–291.CrossRefGoogle Scholar
  86. Tao, X. & Zhou, X. (2004). A modified viral satellite DNA that suppresses gene expression in plants. Plant J. 38, 850–860.CrossRefPubMedGoogle Scholar
  87. van Bel, A. J. E. (1993). Strategies of phloem loading. Annu. Rev. Plant Physiol. Plant Mol. Biol. 44, 253–281.CrossRefGoogle Scholar
  88. van Bel, A. J. E., & Kempers, R. (1997). The pore/plasmodesm unit; key element in the interplay between sieve element and companion cell. Progr. Bot. 58, 278–291.Google Scholar
  89. van Wezel, R., Liu, H., Tien, P., Stanley, J., & Hong, Y. (2001). Gene C2 of the monopartite geminivirus tomato yellow leaf curl virus-China encodes a pathogenicity determinant that is localized in the nucleus. Mol. Plant Microbe Interact. 14, 1125–1128.CrossRefPubMedGoogle Scholar
  90. Vanitharani, R., Chellappan, P., & Fauquet, C. M. (2005). Geminiviruses and RNA silencing. Trends Plant Sci. 10, 144–151.PubMedGoogle Scholar
  91. Verchot, J., Driskel, B. A., Zhu, Y., Hunger, R. M., & Littlefield, L. J. (2001). Evidence that soilborne wheat mosaic virus moves long distance through the xylem in wheat. Protoplasma 218, 57–66.CrossRefPubMedGoogle Scholar
  92. Waigmann, E., Ueki, S., Trutnyeva, K., & Citovsky, V. (2004). The ins and outs of nondestructive cell-to-cell and systemic movement of plant viruses. Crit. Rev. Plant Sci. 23, 195–250.CrossRefGoogle Scholar
  93. Wartig, L., Kheyr-Pour, A., Noris, E., Dekouchkovsky, F., Jouanneau, F., Gronenborn, B., & Jupin, I. (1997). Genetic analysis of the monopartite tomato yellow leaf curl geminivirus: roles of V1, V2 and C2 ORFs in viral pathogenesis. Virology 228, 132–140.CrossRefPubMedGoogle Scholar
  94. Waterhouse, P. M. & Murant, A. F. (1982). Carrot red leaf virus. AAB Descr. Plant Vir. 249, 1–13.Google Scholar
  95. Wege, C., Saunders, K., Stanley, J., & Jeske, H. (2001). Comparative analysis of tissue tropism of bipartite geminiviruses. J. Phytopathol. 149, 359–368.CrossRefGoogle Scholar
  96. Wege, C. & Siegmund, D. (2006). Synergism of a DNA and an RNA virus: enhanced tissue infiltration of Abutilon mosaic begomovirus (AbMV) upon co-infection with cucumber mosaic virus (CMV). Virology 357, 10–28.CrossRefPubMedGoogle Scholar
  97. Wege, C. & Pohl, D. (2007). Abutilon mosaic virus DNA B component supports mechanical virus transmission, but does not counteract begomoviral phloem limitation in transgenic plants. Virology, in press; doi: 10.1016/j.virol.2007.03.041.Google Scholar
  98. Zhou, X., Liu, Y., Calvert, L., Munoz, C., Otim-Nape, G. W., Robinson, D. J., & Harrison, B. D. (1997). Evidence that DNA-A of a geminivirus associated with severe cassava mosaic disease in Uganda has arisen by interspecific recombination. J. Gen. Virol. 78, 2101–2111.PubMedGoogle Scholar
  99. Zhou, X., Xie, Y., Tao, X., Zhang, Z., Li, Z., & Fauquet, C. M. (2003). Characterization of DNAbeta associated with begomoviruses in China and evidence for co-evolution with their cognate viral DNA-A. J. Gen. Virol. 84, 237–247.CrossRefPubMedGoogle Scholar
  100. Zhou, X. P., Liu, Y. L., Robinson, D. J., & Harrison, B. D. (1998). Four DNA-A variants among Pakistani isolates of cotton leaf curl virus and their affinities to DNA-A of geminivirus isolates from okra. J. Gen. Virol. 79, 915–923.PubMedGoogle Scholar
  101. Zrachya, A., Glick, E., Levy, Y., Arazi, T., Citovsky, V., & Gafni, Y. (2007). Suppressor of RNA silencing encoded by Tomato yellow leaf curl virus-Israel. Virology 358, 159–165.CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Christina Wege
    • 1
  1. 1.Department of Molecular Biology and Plant Virology, Institute of BiologyUniversität StuttgartGermany

Personalised recommendations