Skip to main content

GENETICALLY ENGINEERED MICROORGANISMS FOR POLLUTION MONITORING

  • Conference paper

Part of the book series: NATO Science Series ((NAIV,volume 69))

Abstract

At the heart of every biosensor is a biological entity, the purpose of which is to react with the target analyte(s) and generate a readily quantifiable signal. Traditional biosensors are based on the unique specificity of enzymes to their substrates, antibodies to antigens or that of nucleic acids to their complementary sequences.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  • Abd-El Haleem, D., Ripp, S., Scott, C. and Sayler, G. S., 2002, A luxCDABE-based bioluminescent bioreporter for the detection of phenol, J. Ind. Microbiol. Biotechnol. 29:233–237.

    Article  CAS  Google Scholar 

  • Bahl, M.I., Hansen, L.H., Licht, T.R., Sorensen, S.J., 2004, In vivo detection and quantification of tetracycline by use of a whole-cell biosensor in the rat intestine, Antimicrob. Agents Chemother. 48:1112–1117.

    Article  CAS  Google Scholar 

  • Barrett, J.C., Kawasaki, E.S., 2003. Microarrays: the use of oligonucleotides and cDNA for the analysis of gene expression, Drug Discov. Today 8:134–141.

    Article  CAS  Google Scholar 

  • Barry, R., Soloviev, M., 2004, Quantitative protein profiling using antibody arrays, Proteomics 4:3717–3726.

    Article  CAS  Google Scholar 

  • Belkin, S., 2003, Microbial whole-cell sensing systems of environmental pollutants, Curr. Opin. Microbiol. 6:206–212.

    Article  CAS  Google Scholar 

  • Belkin, S., Smulski, D. R., Dadon, S., Vollmer, A. C., Van Dyk, T. K., LaRossa, R. A., 1997, A panel of stress-responsive luminous bacteria for toxicity detection, Wat. Res. 31:3009–3016.

    Article  CAS  Google Scholar 

  • Biran, I., Babai, R., Levcov, K., Rishpon, J., Ron, E. Z., 2000, Online and in situ monitoring of environmental pollutants: electrochemical biosensing of cadmium, Environ. Microbiol. 2:285–90.

    Article  CAS  Google Scholar 

  • Biran, I., Walt, D. R., 2002, Optical imaging fiber-based single live cell arrays: a high-density cell assay platform, Anal. Chem. 74:3046–3054.

    Article  CAS  Google Scholar 

  • Biran, I., Rissin, D. M., Ron, E. Z., Walt, D. R., 2003, Optical imaging fiber-based live bacterial cell array biosensor, Anal. Biochem. 315:106–13.

    Article  CAS  Google Scholar 

  • Bolton, E. K., Sayler, G. S., Nivens, D. E., Rochelle, J. M., Ripp, S., Simpson, M. L., 2002, Integrtaed CMOS photodetectors and signal processing for very low-level chemical sensing with the bioluminescent bioreporter integrated circuit, Sens. Actuator. B-Chem. 85:179–185.

    Article  Google Scholar 

  • Burlage, R. S., Sayler, G. S., Larimer, F., 1990, Monitoring of naphthalene catabolism by bioluminescence with nah-lux transcriptional fusions, J. Bacteriol. 172:4749–4757.

    CAS  Google Scholar 

  • Daunert, S., Barret, G., Feliciano, J. S., Shetty, R. S., Shrestha, S., Smith-Spencer, W., 2000, Genetically engineered whole-cell sensing systems: coupling biological recognition with reporter genes, Chem. Rev. 100:2705–2738.

    Article  CAS  Google Scholar 

  • Dollard, M. A., Billard, P., 2003, Whole-cell bacterial sensors for the monitoring of phosphate bioavailability, J. Microbiol. Meth. 55:221–229.

    Article  CAS  Google Scholar 

  • Durham, K. A., Porta, D., Twiss, M. R., McKay, R. M. L., Bullerjahn, G. S., 2002, Construction and initial characterization of a luminescent Synechococcus sp. PCC 7942 Fe-dependent bioreporter, FEMS Microbiol. Lett. 209:215–221.

    Article  CAS  Google Scholar 

  • Gillor, O., Hadas, O., Post, F. A., Belkin, S., 2002, Phosphorus bioavailability monitoring by a luminescent cyanobacterial sensor strain, J. Phycol. 38:107–115.

    Article  Google Scholar 

  • Gillor, O., Harush, A., Hadas, O., Post, A. F., Belkin, S., 2003, A cyanobacterial glnA::lux fusion for assessment of nitrogen bioavailability in a freshwater lake, Appl. Environ. Microbiol. 69:1465–1474.

    Article  CAS  Google Scholar 

  • Gu, M. B., Min, J., Kim, E. J., 2002, Toxicity monitoring and classification of endocrine disrupting chemicals (EDCs) using recombinant bioluminescent bacteria, Chemosphere 46:289–294.

    Article  CAS  Google Scholar 

  • Gu, M. B., Mitchell, R. J., Kim, B. C., 2004, Whole-cell-based biosensors for environmental biomonitoring and application, Adv. Biochem. Eng. Biotechnol. 87:269–305.

    CAS  Google Scholar 

  • Guan, X., d’Angelo, E., Luo, W., Daunert, S., 2002, Whole-cell biosensing of 3- chlorocatechol in liquids and soils, Anal. Bioanal. Chem. 374:841–847.

    Article  CAS  Google Scholar 

  • Hakkila, K., Maksimow, M., Karp, M., Virta, M., 2002, Reporter genes lucFF, luxCDABE, gfp and dsred have different characteristics in whole-cell bacterial sensors, Anal. Biochem. 301:235–242.

    Article  CAS  Google Scholar 

  • Hansen, L. H, Sørensen, S. J., 2001, The use of whole-cell biosensors to detect and quantify compounds or conditions affecting biological systems, Microb. Ecol. 42:483–494.

    Article  CAS  Google Scholar 

  • Horsburgh, A. M., Mardlin, D. P., Turner, N. L., Henkler, R., Strachan, N., Glover, L. A., Paton, G. I., Killham, K., 2002, On-line microbial biosensing and fingerprinting of water pollutants, Biosens. Bioelec. 17:495–501.

    Article  CAS  Google Scholar 

  • IUPAC Compendium of Chemical Terminology, 2nd edition, 1997. http://www.iupac.org/- goldbook/B00663.pdf.

    Google Scholar 

  • Ivanikova, N. V., McKay, R. M. L., Bullerjahn, G. S., 2005, Construction and characterization of a cyanobacterial bioreporter capable of assessing nitrate assimilatory capacity in freshwater, Limnol. Ocean.-Methods 3:86–93.

    CAS  Google Scholar 

  • Knight, A. W., Keenan, P. O., Goddard, N.J., Fielden, P.R., Walmsley, R.M., 2004, A yeastbased cytotoxicity and genotoxicity assay for environmental monitoring using novel portable instrumentation, J. Environ. Monit. 6:71–79.

    Article  CAS  Google Scholar 

  • Kohler, S., Belkin, S., Schmid, R. D., 2000, Reporter gene bioassays in environmental analysis, Fresenius J. Anal. Chem. 366:769–779.

    Article  CAS  Google Scholar 

  • Kostrzynska, M., Leung, K. T., Lee, H., Trevors, J. T., 2002, Green fluorescent protein-based biosensor for detecting SOS-inducing activity of genotoxic compounds, J. Microbiol. Methods 48:43–51.

    Article  CAS  Google Scholar 

  • Kuang, Y., Biran, I., Walt, D. R., 2004, Living bacterial cell array for genotoxin monitoring. Anal. Chem. 76:2902–2909.

    Article  CAS  Google Scholar 

  • Lee, K. H., 2001, Proteomics: a technology-driven and technology-limited discovery science, Trends in Biotechnol. 19:217–222.

    Article  CAS  Google Scholar 

  • Lee, J. H., Mitchell, R. J., Kim, B. C., Cullen, D. C., Gu, M. B., 2005, A cell array biosensor for environmental toxicity analysis, Biosens. Bioelectron. 21:500–507.

    Article  CAS  Google Scholar 

  • Lueking, A., Cahill, D. J., Mullner, S., 2005, Protein biochips: A new and versatile platform technology for molecular medicine, Drug Discov. Today 10:789–794.

    Article  CAS  Google Scholar 

  • Mbeunkui, F., Richaud, C., Etienne, A. L., Schmid, R. D., Bachmann, T. T., 2002, Bioavailable nitrate detection in water by an immobilized luminescent cyanobacterial reporter strain, Appl. Microbiol. Biotechnol. 60:306–312.

    Article  CAS  Google Scholar 

  • Min, J., Pham, C. H., Gu, M. B., 2003, Specific responses of bacterial cells to dioxins, Environ. Toxicol. Chem. 22:233–238.

    Article  CAS  Google Scholar 

  • Mirasoli, M., Feliciano, J., Michelini, E., Daunert, S., Roda, A., 2002, Internal response correction for fluorescent whole-cell biosensors, Anal. Chem. 74:5948–5953.

    Article  CAS  Google Scholar 

  • Mitchell, R. J., Gu, M. B., 2004, An Escherichia coli biosensor capable of detecting both genotoxic and oxidative damage, Appl. Microbiol. Biotechnol. 64:46–52.

    Article  CAS  Google Scholar 

  • Mitchell, R. J., Ahn, J. M., Gu, M.mB., 2005, Comparison of Photorhabdus luminescens and Vibrio fischeri lux fusions to study gene expression pattern, J. Microbiol. Biotechnol. 15:48–54.

    CAS  Google Scholar 

  • Nivens, D. E., McKnight, T. E., Moser, S. A., Osbourn, S. J., Simpson, M. L., Sayler, G. S., 2004, Bioluminescent bioreporter integrated circuits: potentially small, rugged and inexpensive whole-cell biosensors for remote environmental monitoring, J. Appl. Microbiol. 96:33–46.

    Article  CAS  Google Scholar 

  • Paitan, Y., Biran, I., Shechter, N., Biran, D., Rishpon, J., Ron, E. Z., 2004, Monitoring aromatic hydrocarbons by whole cell electrochemical biosensors, Anal. Biochem. 335:175–183.

    Article  CAS  Google Scholar 

  • Park, C. B. and Clark, D. S., 2002, Sol-gel encapsulated enzyme arrays for high-throughput screening of biocatalytic activity, Biotechnol. Bioeng. 78:229–235.

    Article  CAS  Google Scholar 

  • Polyak, B., Bassis, E., Novodvorets, A., Belkin, S., Marks, R. S., 2001, Bioluminescent whole cell optical fiber sensor to genotoxicants: system optimization, Sensors & Actuators Bchem. 74:18–26.

    Article  Google Scholar 

  • Popovtzer, R., Neufeld, T., Biran, D., Ron, E. Z., Rishpon, J., Shacham-Diamand, Y. R., 2005, Novel integrated electrochemical nano-biochip for toxicity detection in water, Nano Lett. 5:1023–1027.

    Article  CAS  Google Scholar 

  • Quershi, A. A., Bulich, A. A., Isenberg, D. L., 1998, Microtox toxicity test systems - where they stand today. in: Microscale Testing in Aquatic Toxicology: Advances, Techniques, and Practice, P. G. Wells, K. Lee, C. Blaise, eds., CRC Press, Boca Raton, Florida, pp. 185–199.

    Google Scholar 

  • Radhika, V., Milkevitch, M., Audige, V., Proikas-Cezanne, T., Dhanasekaran, N., 2005, Engineered Saccharomyces cerevisiae strain BioS-1, for the detection of water-borne toxic metal contaminants, Biotechnol. Bioeng. 90:29–35.

    Article  CAS  Google Scholar 

  • Rajan Premkumar, J. R., Rosen, R., Belkin, S., Lev, O., 2002, Sol-gel luminescence biosensors: encapsulation of recombinant E. coli reporters in thick silicate films, Anal. Chim. Acta 462:11–23.

    Article  CAS  Google Scholar 

  • Sagi, E., Hever, N., Rosen, R., Bartolome, A. J., Premkumar, J. R., Ulber, R., Lev, O., Scheper, T., Belkin, S., 2003, Fluorescence and bioluminescence reporter functions in genetically modified bacterial sensor strains, Sens. Actuators B-Chem. 90:2–8.

    Article  Google Scholar 

  • Sayler, G. S., Simpson, M. L., Cox, C. D., 2004, Emerging foundations: nano-engineering and bio-microelectronics for environmental biotechnology, Curr. Opin. Microbiol. 7:267–273.

    Article  CAS  Google Scholar 

  • Selifonova, O., Burlage, R., Barkay, T., 1993, Bioluminescent sensors for detection of bioavailable Hg(II) in the environment, Appl. Environ. Microbiol. 59:3083–3090.

    CAS  Google Scholar 

  • Shao, C. Y., Howe, C. J., Porter, A. J. R., Glover, L. A., 2002, Novel cyanobacterial biosensor for detection of herbicides, Appl. Environ. Microbiol. 68:5026–5033.

    Article  CAS  Google Scholar 

  • Stiner, L., Halverson, L. J., 2002, Development and characterization of a green fluorescent protein-based bacterial biosensor for bioavailable toluene and related compounds, Appl. Environ. Microbiol. 68:1962–1971.

    Article  CAS  Google Scholar 

  • Southward, C. M., Surette, M. G., 2002, The dynamic microbe: green fluorescent protein brings bacteria to light, Mol. Microbiol. 45:1191–1196.

    Article  CAS  Google Scholar 

  • Taylor, C. J., Bain, L. A., Richardson, D. J., Spiro, S., Russell, D. A., 2004, Construction of a whole-cell gene reporter for the fluorescent bioassay of nitrate, Anal. Biochem. 328:60–66.

    Article  CAS  Google Scholar 

  • Tiensing, T., Strachan, N., Paton, G. I., 2002, Evaluation of interactive toxicity of chlorophenols in water using lux-marked biosensors, J. Environ. Monit. 4:482–489.

    Article  CAS  Google Scholar 

  • Ulitzur, S., Lahav, T., Ulitzur, N., 2002, A novel and sensitive test for rapid determination of water toxicity, Environ. Toxicol. 17:291–296.

    Article  CAS  Google Scholar 

  • Van Dyk, T. K., Majarian, W. R., Konstantinov, K. B., Young, R. M., Dhurjati, P. S., LaRossa, R. A., 1994, Rapid and sensitive pollutant detection by induction of heat shock gene-bioluminescence gene fusions, Appl. Environ. Microbiol. 60:1414–1420.

    Google Scholar 

  • Van Dyk, T. K., DeRose, E. J., Gonye, G. E., 2001, LuxArray, a high-density, genome wide transcription analysis of Escherichia coli using bioluminescent reporter strains, J. Bacteriol. 183:5496–5505.

    Article  Google Scholar 

  • Vollmer, A. C., Belkin, S., Smulski, D. R., Van Dyk, T. K., LaRossa, R. A., 1997, Detection of DNA damage by use of Escherichia coli carrying recA’::lux, uvrA’::lux, or alkA’::lux reporter plasmids, Appl. Environ. Microbiol. 163:2566–2571.

    Google Scholar 

  • Vollmer, A. C., Van Dyk, T. K., 2004, Stress responsive bacteria: Biosensors as environmental monitors, Adv. Microb. Physiol. 49:131–174.

    CAS  Google Scholar 

  • Wang, J., 2000, From DNA biosensors to gene chips, Nucleic Acids Res. 16:3011–3016.

    Article  Google Scholar 

  • Weitz, H. J., Campbell, C. D., Killham, K., 2002, Development of a novel, bioluminescencebased, fungal bioassay for toxicity testing, Environ. Microbiol. 4:422–429.

    Article  CAS  Google Scholar 

  • Wells, M., Gosch, M., Rigler, R., Harms, H., Lasser, T., van der Meer, J. R., 2005, Ultrasensitive reporter protein detection in genetically engineered bacteria, Anal. Chem. 77:2683–2689.

    Article  CAS  Google Scholar 

  • Wood, K. V., Gruber, M. G., 1996, Transduction in microbial biosensors using multiplexed bioluminescence, Biosens. Bioelectron. 11:207–214.

    Article  CAS  Google Scholar 

  • Zhang, J., Campbell, R. E., Ting, A. Y., Tsien, R. Y., 2002, Creating new fluorescent probes for cell biology. Nat. Rev. Mol. Cell Biol. 3:906–918.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Belkin, S. (2006). GENETICALLY ENGINEERED MICROORGANISMS FOR POLLUTION MONITORING. In: Twardowska, I., Allen, H.E., Häggblom, M.M., Stefaniak, S. (eds) Soil and Water Pollution Monitoring, Protection and Remediation. NATO Science Series, vol 69. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4728-2_9

Download citation

Publish with us

Policies and ethics