• Herbert E. Allen
  • Colin R. Janssen
Part of the NATO Science Series book series (NAIV, volume 69)


Ecotoxicological effects of metals in aquatic and terrestrial environments often do not correlate well to the total concentration of metal. Environmental quality criteria and standards based on total concentration of a metal may over or under predict actual effects.


Humic Substance Natural Organic Matter Water Quality Criterion Soil Pore Water Copper Toxicity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, H. E., 1993, The significance of trace metal speciation for water, sediment and soil quality standards, Sci. Total Environ. 134, Supplement Part 1:23–45.CrossRefGoogle Scholar
  2. Allen, H. E., 2001, Terrestrial ecosystems: An overview, in: Bioavailability of Metals in Terrestrial Ecosystems: Importance of Partitioning for Bioavailability to Invertebrates, Microbes and Plants, H. E. Allen, ed., SETAC Press, Pensacola, FL, pp. 1–5.Google Scholar
  3. Allen, H. E., and Hansen, D. J., 1996, The importance of trace metal speciation to water quality criteria. Water Environ. Res. 68:42–54.CrossRefGoogle Scholar
  4. Bossuyt, B. T. A., De Schamphelaere, K. A. C., and Janssen, C. R., 2004, Using the biotic ligand model for predicting the acute sensitivity of Cladoceran dominated communities to copper in natural surface waters, Environ. Sci. Technol. 38:5030–5037.CrossRefGoogle Scholar
  5. Borgmann, U., and Ralph, K. M., 1983, Complexation and toxicity of copper and the free metal bioassay technique, Water Res. 17:1697–1703.CrossRefGoogle Scholar
  6. Campbell, P. G. C., 1995, Interactions between trace metals and aquatic organisms: A critique of the free-ion activity model, in: Metal Speciation and Bioavailability in Aquatic Systems, A. Tessier and D. R. Turner, eds., Wiley, New York, pp. 45–97.Google Scholar
  7. Cowan, C. E., Jenne, E. A., and Kinnison, R. R., 1986, Methodology for determining the relationship between toxicity and the aqueous speciation of a metal, in: Aquatic Toxicity and Environmental Fate: Ninth Volume. ASTM STP 921. T.M. Poston and R. Purdy, eds., American Society for Testing and Materials, Philadelphia, pp. 463–478.Google Scholar
  8. De Schamphelaere, K. A. C., and Janssen, C. R., 2002, A biotic ligand model predicting acute copper toxicity for Daphnia magna: The effects of calcium, magnesium, sodium, potassium, and pH, Environ. Sci. Technol. 36:48–54.CrossRefGoogle Scholar
  9. De Schamphelaere, K. A. C., and Janssen, C. R., 2004, Development and field validation of a biotic ligand model predicting chronic copper toxicity to Daphnia magna, Environ. Toxicol. Chem. 23:1365–1375.CrossRefGoogle Scholar
  10. De Schamphelaere, K. A. C., Vasconcelos, F. M., Heijerick, D. G., Tack, F. M. G., Delbeke, K., Allen, H. E., and Janssen, C. R., 2003. Development and field validation of a predictive copper toxicity model for the green alga Pseudokirchneriella subcapita, Environ. Toxicol. Chem. 22:2454–2465.CrossRefGoogle Scholar
  11. De Schamphelaere, K. A. C., and Janssen, C. R., 2004, Bioavailability and chronic toxicity of zinc to juvenile rainbow trout (Oncorhynchus mykiss): comparison with other fish species and development of a biotic ligand model, Environ. Sci. Technol. 38:6201–6209.CrossRefGoogle Scholar
  12. De Schamphelaere, K. A. C., Canli, M., Van Lierde, V., Forrez, I., Vanhaecke, F., and Janssen, C. R., 2004, Reproductive toxicity of dietary zinc to Daphnia magna, Aquat. Toxicol. 70:233–244.CrossRefGoogle Scholar
  13. De Schamphelaere, K. A. C., Lofts, S., and Janssen, C. R., 2005a, Bioavailability models for predicting acute and chronic toxicity of zinc to algae, daphnids and fish in natural surface waters, Environ. Toxicol. Chem. 24:1190–1197.CrossRefGoogle Scholar
  14. De Schamphelaere, K. A. C., Stauber, J. L., Wilde, K. L., Markich, S. J., Brown, P. L., Franklin, N.,M., Creighton, N. M., and Janssen, C. R., 2005b, Towards a biotic ligand model for freshwater green algae: surface-bound and internal copper explain the effect of pH on copper toxicity, Environ. Sci. Technol. 39:2067–2072.CrossRefGoogle Scholar
  15. Diamond, J. M., Gerardi, C., Leppo, E., and Miorelli, T., 1997, Using a water-effect ratio approach to establish effects of an effluent influenced stream on copper toxicity to the fathead minnow, Environ. Toxicol. Chem. 16:1480–1487.CrossRefGoogle Scholar
  16. Di Toro, D. M., Allen, H. E., Bergman, H. L., Meyer, J. S., Paquin, P. R., and Santore. R. C., 2001, Biotic ligand model of the acute toxicity of metals. 1. Technical basis, Environ. Toxicol. Chem. 20:2383–2396.CrossRefGoogle Scholar
  17. Dunbar L., 1996, Derivation of a site-specific dissolved copper criteria for selected freshwater streams in Connecticut, Technical Report, Connecticut Department of Environmental Protection, Water Toxics Program, Falmouth, MA.Google Scholar
  18. Erickson, R. J., Benoit, D. A., Mattson, V. R., Nelson, Jr., H. P., and Leonard, E. N., 1996, The effects of water chemistry on the toxicity of copper to fathead minnows, Environ. Toxicol. Chem. 15:181–193.CrossRefGoogle Scholar
  19. Flemming, C. A., and Trevors, J. T., 1989, Copper toxicity and chemistry in the environment: A review, Water, Air, Soil Pollut. 44:143–148.CrossRefGoogle Scholar
  20. Florence, T.M., and Stauber, J. L., 1986, Toxicity of copper complexes to the marine diatom, Nitzschia closterium, Aquat. Toxicol. 8:11–26.CrossRefGoogle Scholar
  21. Florence, T. M., Powell, H. K. J., Stauber, J. L., and Town, R. M., 1992, Toxicity of lipidsoluble copper(II) complexes to the marine diatom Nitzschia closterium: Amelioration by humic substances, Water Res. 26:1187–1193.CrossRefGoogle Scholar
  22. Guy, R. D., and Kean, A. R., 1980, Algae as a chemical speciation monitor - I. A comparison of algal growth and computer calculated speciation. Water Res. 14:891–899.CrossRefGoogle Scholar
  23. Heijerick, D. G., De Schamphelaere, K. A. C., Van Sprang, P. A., and Janssen, C. R., 2005, Development of a chronic zinc biotic ligand model for Daphnia magna, Ecotoxicol. Environ. Safe. 62:1–10.CrossRefGoogle Scholar
  24. Hodson, P.V., Borgmann, U., and Shear, H., 1979, Toxicity of copper to aquatic biota, in: Copper in the Environment. Part II. Health Effects, J. O. Nriagu, ed., Wiley-Interscience, New York, pp. 307–372.Google Scholar
  25. Hough, R. L., Tye, A. M., Crout, N. M. J., McGrath, S. P., Zhang, H. and Young, S.D., 2005, Evaluating a ‘free ion activity model’ applied to metal uptake by Lolium perenne L. grown in contaminated soils, Plant Soil 270:1–12.CrossRefGoogle Scholar
  26. Kelley, M., 1988, Mining and the Freshwater Environment, Elsevier, Essex, UK.Google Scholar
  27. Luoma, S. N., 1983, Bioavailability of trace metals to aquatic organisms - a review, Sci. Total Environ. 28:1–22.Google Scholar
  28. Meador, J. P., 1991, The interaction of pH, dissolved organic carbon, and total copper in the determination of ionic copper and toxicity, Aquat. Toxicol. 19:13–31.CrossRefGoogle Scholar
  29. Morel, F. M. M., 1983, Principles of Aquatic Chemistry, Wiley, New York.Google Scholar
  30. Niyogi, S. and Wood, C. M., 2004, Biotic ligand model, a flexible tool for developing sitespecific water quality guidelines for metals, Environ. Sci. Technol. 38:6177–6192.CrossRefGoogle Scholar
  31. O’Donnel, J. R., Kaplan, B. M., and Allen, H. E., 1985, Bioavailability of trace metals in natural waters, in: Aquatic Toxicology and Hazard Assessment: Seventh Symposium, R. D. Cardwell, R. Purdy and R. C. Bahner, eds., American Society for Testing and Materials, Philadelphia, PA, pp. 485–500.Google Scholar
  32. Pagenkopf, G. K., 1983, Gill surface interaction model for trace metal toxicity to fishes: Role of complexation, pH, and water hardness, Environ. Sci. Technol. 17:342–347.CrossRefGoogle Scholar
  33. Paquin, P. R., Gorsuch, J. W., Apte, S., Batley, G. E., Bowles, K. C., Campbell, P. G. C., Delos, C. G., Di Toro, D. M., Dwyer, R. L., Galvez, F., Gensemer, R. W., Goss, G. C., Hogstrand, C., Janssen, C. R., and Wu, K. B., 2002, The biotic ligand model; A historical review. Comp. Biochem. Physiol. C-Toxicol. 133:3–35.CrossRefGoogle Scholar
  34. Playle, R. C., Dixon, D. G., and Burnison, K., 1993, Copper and cadmium binding to fish gills: Estimates of metal-gill stability constants and modelling of metal accumulation, Can. J. Fish. Aquatic Sci. 51:2678–2687.CrossRefGoogle Scholar
  35. Plette, A. C. C., Nederlof, M. M., Temminghoff, E. J. M., and van Reimsdijk, W. H., 1999, Bioavailability of heavy metals in terrestrial and aquatic systems: A quantitative approach, Environ. Toxicol. Chem. 18:1882–1890.CrossRefGoogle Scholar
  36. Ponizovsky, A. A., Thakali, S., Allen, H. E., Di Toro, D. M. and Ackerman, A. J., 2006, Effect of soil properties on copper release in soil solutions at low moisture content, Environ. Toxicol. Chem. (in press)Google Scholar
  37. Prothro, M.G., 1993, Office of Water Policy and Technical Guidance on Interpretation and Implementation of Aquatic Life Metals Criteria, U.S. Environmental Protection Agency, Washington, DC.Google Scholar
  38. Santore, R. C., Di Toro, D. M., Paquin, P. R., Allen, H. E., and Meyer, J. S., 2001, A biotic ligand model of the acute toxicity of metals. II. Application to acute copper toxicity in freshwater fish and daphnia, Environ. Toxicol. Chem. 20:2397–2402.CrossRefGoogle Scholar
  39. Steemann Nielsen, E., and Wium-Andersen, S., 1970, Copper as poison in the sea and in freshwater, Mar. Biol. 6:93–97.CrossRefGoogle Scholar
  40. Steenbergen, N. T. T. M., Iaccino, F., de Winkel, M., Reijnders, L., and Peijnenburg, W. J. G. M., 2005, Development of a biotic ligand model and a regression model predicting acute copper toxicity to the earthworm Aporrectodea caliginosa. Environ. Sci. Technol. 39:5694–5702.CrossRefGoogle Scholar
  41. Stephan, C. E., Mount, D. I., Hansen, D. J., Gentile, J. H., Chapman, G. A., and Brungs, W.A., 1985, Guidelines for Deriving Numerical National Water Quality Criteria for the Protection of Aquatic Organisms and Their Uses, U.S. Environmental Protection Agency, Washington, NTIS PB85–227049, NTIS, Springfield, VA.Google Scholar
  42. Sunda, W., and Guillard, R. R. L., 1976, The relationship between cupric ion activity and the toxicity of copper to phytoplankton, J. Mar. Res. 34:511–529.Google Scholar
  43. Thakali, S., Allen, H. E., Di Toro, D. M., Ponizovsky, A. A., Rooney, C., Zhao, F-J., and McGrath, S., 2005, Developing a TBLM: Copper effect on barley root elongation, Proceedings of the 8 th International Conference on the Biogeochemistry of Trace Elements, Adelaide, Australia, pp. 357–358.Google Scholar
  44. Tipping, E., 1994, WHAM: A chemical equilibrium model and computer code for waters, sediments, and soils incorporating a discrete site/electrostatic model of ion-binding by humic substances, Computers Geosci. 21:973–1023.CrossRefGoogle Scholar
  45. Tipping, E., 1998, Humic ion-binding model VI: An improved description of the interactions of protons and metal ions with humic substances, Aquatic Geochem. 4:3–48.CrossRefGoogle Scholar
  46. Tubbing, D. M. J., Admiraal, W., Cleven, R. F. M. J., Iqbal, M., van de Meent, D., and Verweij, W., 1994, The contribution of complexed copper to the metabolic inhibition of algae and bacteria in synthetic media and river water, Water Res. 28:37–44.CrossRefGoogle Scholar
  47. U.S. EPA, 1992, Interim Guidance on Interpretation and Implementation of Aquatic Life Criteria for Metals, Washington, DC.Google Scholar
  48. U.S. EPA, 1994, Interim Guidance on Determination and Use of Water-Effect Ratios for Metals, EPA 823-B-94–001, Washington, DC.Google Scholar
  49. U.S. EPA, 1999, Notice of intent to revise aquatic life criteria for copper, silver, lead, cadmium, iron and selenium; Notice of intent to develop aquatic life criteria for atrazine, diazinon, nonylphenol, methyl tertiary-butyl ether (MtBE), manganese and saltwater dissolved oxygen (Cape Cod to Cape Hatteras); Notice of data availability; Request for data and information, Federal Register: October 29, 1999 (Volume 64, Number 209), pp. 58409–58410.Google Scholar
  50. Van Gestel, C. A. M., and Koolhaas J. E., 2004, Water-extractability, free ion activity, and pH explain cadmium sorption and toxicity to Folsomia candida (Collembola) in seven soil-pH combinations, Environ. Toxicol. Chem. 20:1822–1833.CrossRefGoogle Scholar
  51. Villavicencio, G., Urrestarazu, P., Carvajal, C., De Schamphelaere, K. A. C., Janssen, C. R., Torres, J. C., and Rodriguez, P. H., 2005, Biotic ligand model prediction of copper toxicity to daphnids in a range of natural waters in Chile, Environ. Toxicol. Chem. 24:1287–1299.CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Herbert E. Allen
    • 1
  • Colin R. Janssen
    • 2
  1. 1.Center for the Study of Metals in the Environment, Department of Civil and Environmental EngineeringUniversity of DelawareNewarkU.S.A.
  2. 2.Laboratory of Environmental Toxicology and Aquatic EcologyGhent UniversityBelgium

Personalised recommendations