ROLE OF MYCORRHIZAL FUNGI IN PHYTOREMEDIATION AND TOXICITY MONITORING OF HEAVY METAL RICH INDUSTRIAL WASTES IN SOUTHERN POLAND

  • Katarzyna Turnau
  • Elzbieta Orlowska
  • Przemyslaw Ryszka
  • Szymon Zubek
  • Teresa Anielska
  • Stefan Gawronski
  • Anna Jurkiewicz
Part of the NATO Science Series book series (NAIV, volume 69)

Abstract

The chapter summarizes research carried out within the last 15 years on the role of mycorrhizal fungi in phytoremediation of zinc wastes located in southern Poland.

Keywords

Biomass Zinc Toxicity Dust Cadmium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Azcón-Aguilar, C., and Barea, J. M., 1996, Arbuscular mycorrhizas and biological control of soil-borne plant pathogens. An overview of the mechanisms involved, Mycorrhiza 6:457–464.CrossRefGoogle Scholar
  2. Bakker, M. I., Vorenhout, M., Sijm, D. T. H. M., and Kollofel, C., 1999, Dry deposition of atmospheric polycyclic hydrocarbons in three Plantago species. Env. Toxicol. Chem. 18(10):2289–2294.CrossRefGoogle Scholar
  3. Barea, J. M., 1997, Mycorrhiza/bacteria interactions on plant growth promotion, in: Plant Growth Promoting Rhizobacteria, Present Status and Future Prospects, A. Ogoshi, L. Kobayashi, Y. Homma, F. Kodama, N. Kondon, and S. Akino, eds, OECD, Paris, pp. 150–158.Google Scholar
  4. Barea, J. M., 2000, Rhizosphere and mycorrhiza of field crops, in: Biological Resource Management: Connecting Science and Policy, J. P. Toutant, E. Balazs, E. Galante, J. M. Lynch, J. S. Schepers, D. Werner, and P. A. Werry, eds., OECD, INRA edition and Springer, Berlin, pp. 110–112.Google Scholar
  5. Baroni, F., Boscagli, A., Protano, G., and Riccobono, F., 2000, Antimony accumulation in Achillea ageratum, Plantago lanceolata and Silene vulgaris growing in an old Sb-mining area, Environ. Pollut. 109:347–352.CrossRefGoogle Scholar
  6. Bizoux, J.R., Brevers, F., Meerts, P., Graitson, E., and Mahy., G., 2004, Ecology and conservation of Belgian populations of Viola calaminaria, a metallophyte with a restricted geographic distribution. Belg. J. Bot. 137(1):91–104.Google Scholar
  7. Biskup, A., and Izmailow, R., 2004, Endosperm development in seeds of Echium vulgare L. (Boraginaceae) from polluted sites. Acta Biol. Cracov. Bot. 46:39–44.Google Scholar
  8. Blaudez, D., Botton, B., and Chalot, M., 2000, Cadmium uptake and subcellular compartmentation in the ectomycorrhizal fungus Paxillus involutus, Microbiology 146:1109–1117.Google Scholar
  9. Bradley, R., Burt, A. J., and Read, D. J., 1982, The biology of mycorrhiza in the Ericaceae. VIII. The role of mycorrhizal infection in heavy metal resistance. New Phytol. 91:197–201.CrossRefGoogle Scholar
  10. Clemens, S., 2001, Molecular mechanisms of plant metal tolerance and homeostasis, Planta 212:475–486.CrossRefGoogle Scholar
  11. Cobbett, C., and Goldsbrough, P., 2002, Phytochelatins and metallothioneis: roles in heavy metal detoxification and homeostatsis, Annu. Rev. Plant Phys. 53:159–182.CrossRefGoogle Scholar
  12. Courbot, M., Diez, L., Ruotolo, R., Chalot, M., and Leroy, P., 2004, Cadmium-responsive thiols in the ectomycorrhizal fungus Paxillus involutus, Appl. Environ. Microbiol. 70:7413–7417.CrossRefGoogle Scholar
  13. Cui, M., and Nobel, P. S., 1992, Nutrient status, water uptake and gas exchange for three desert succulents infected with mycorrhizal fungi, New Phytol. 122:643–649.CrossRefGoogle Scholar
  14. Denny, H. J., and Wilkins D. A., 1987, Zinc tolerance in Betula spp. IV. Mechanisms of ectomycorrhizal amelioration of zinc toxicity, New Phytol. 106:545–553.Google Scholar
  15. Dmowski, K., 2000, Environmental monitoring of heavy metals with magpie (Pica pica) feathers - an example of Polish polluted and control areas, in: Trace elements in the environment, B. Market, and P. Friese, eds., Elsevier Science, Amsterdam, pp. 455–477.Google Scholar
  16. Fomina, M., Burford, E. P., and Gadd G. M., 2005, Toxic metals and fungal communities, in: The Fungal Community - its Organization and Role in the Ecosystem, J. Dighton, J. F. White, and P. Oudemans, eds., CRC Taylor and Francis Group, Boca Raton, FL, pp. 733–758.Google Scholar
  17. Gadd, G. M., 1993, Interaction of fungi with toxic metals, New Phytol. 124:25–60.CrossRefGoogle Scholar
  18. George, E., Häussler, K. U., Vetterlein, D., Gorgus, E., and Marschner, H., 1992, Water and nutrient translocation by hyphae of Glomus mosseae, Can. J. Bot. 70:2130–2137.Google Scholar
  19. Gonzales-Chavez, M. C., Carrillo-Gonzales, R., Wright, S. F., and Nichols K. A., 2004, The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements. Environ. Poll. 130:317–323.CrossRefGoogle Scholar
  20. Gonzales-Chavez, M. C., D’Haen, J., Vangronsveld, B. J., and Dodd, J. C., 2002, Copper sorption and accumulation by the extramatrical mycelium of different Glomus spp. (arbuscular mycorrhizal fungi) isolated from the same polluted soil, Plant Soil 240:287–297.CrossRefGoogle Scholar
  21. Grodzinska, K., Korzeniak, U., Szarek-Łukaszewska, G., and Godzik, B., 2001, Colonization of zinc mine spoils in southern Poland - preliminary studies on vegetation, seed rain and seed bank, Fragm. Flor. Geobot. 45(1–2):123–145.Google Scholar
  22. Haselwandter, K., 1997, Soil micro-organisms, mycorrhiza, and restoration ecology, in: Restoration Ecology and Sustainable Development, K. Urbanska, N. R. Webb, and P. J. Edwards, eds., Cambridge University Press, Cambridge, pp. 65–80.Google Scholar
  23. Hildebrandt, U., Kaldorf, M., and Bothe H., 1999, The zinc violet and its colonization by arbuscular mycorrhizal fungi, J. Plant Physiol. 154(5–6):709–717.Google Scholar
  24. Howe, R., Evans, R. L., and Ketteridge, S. W., 1997, Copper-binding proteins in ectomycorrhizal fungi, New Phytol. 135(1):123–131.CrossRefGoogle Scholar
  25. Jasper, D. A., Abbott, L. K., and Robson, A. D., 1989, Hyphae of a vesicular-arbuscular mycorrhizal fungus maintain infectivity in dry soil, except when the soil is disturbed, New Phytol. 112:101–107.CrossRefGoogle Scholar
  26. Jastrow, J. D., Miller, R. M., and Lussenhop, J., 1998, Contributions of interacting biological mechanisms to soil aggregate stabilization in restored prairie, Soil Biol. Biochem. 30:905–916.CrossRefGoogle Scholar
  27. Jeffries, P., Gianinazzi, S., Perotto, S., Turnau, K., and Barea, J. M., 2003, The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility, Biol. Fert. Soils 37:1–16.Google Scholar
  28. Jentschke, G., and Godbold, D. L., 2000, Metal toxicity and ectomycorrhizas, Physiol. Plantarum 109:107–116.CrossRefGoogle Scholar
  29. Joner, E. J., Briones, R., Leyval, C., 2000, Metal-binding capacity of arbuscular mycorrhizal mycelium, Plant Soil 226:227–234.CrossRefGoogle Scholar
  30. Joner, E. J., and Leyval, C., 1997, Uptake of 109Cd by roots and hyphae of a Glomus mosseae/Trifolium subterraneum mycorrhiza from soil amended with high and low concentrations of cadmium, New Phytol. 138:353–360.CrossRefGoogle Scholar
  31. Jurkiewicz, A., Orlowska, E., Anielska, T., Godzik, B., and Turnau, K., 2004, The influence of mycorrhiza and EDTA application on heavy metal uptake by different maize varieties, Acta. Biol. Cracov. Bot. 46:7–18.Google Scholar
  32. Kabata-Pendias, A., and Pendias H., 1999, Biogeochemistry of trace elements, 2nd ed., PWN, Warszawa.Google Scholar
  33. Kapoor, A., and Virarghavan, T., 1995, Fungal biosorption - an alternative treatment option for heavy metal bearing wastewater - a review, Bioresource Technol. 53:195–206.CrossRefGoogle Scholar
  34. Khan, A. G., Kuek, C., Chaudhry, T. M., Khoo, C. S., and Hayes W. J., 2000, Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation, Chemosphere 41:197–207.CrossRefGoogle Scholar
  35. Lanfranco, L., Bolchi, A., Cesale Ross, E., Ottonello, S., and Bonfante P., 2002, Differential expression of a metallothionein gene during the presymbiotic versus the symbiotic phase of an arbuscular mycorrhizal fungus, Plant Physiol. 130:58–67.CrossRefGoogle Scholar
  36. Leyval, C., Turnau, K., and Haselwandter, K., 1997, Effect of heavy metal pollution on mycorrhizal colonization and function: physiological, ecological and applied aspects, Mycorrhiza 7:139–153.CrossRefGoogle Scholar
  37. Leyval, C., Joner, E. J., del Val, C., and Haselwandter, K., 2002, Potential of arbuscular mycorrhizal fungi for bioremediation, in: Mycorrhizal Technology in Agriculture. From Genes to Bioproducts, S. Gianinazzi, H. Schüepp, J. M. Barea, and K. Haselwandter, eds., Birkhäuser Verlag, Basel pp. 175–186.Google Scholar
  38. Lovera, M., and Cuenca, G., 1996, Arbuscular mycorrhizal infection in Cyperaceae and Gramineae from natural, disturbed and restored savannas in La Gran Sabana, Venezuela, Mycorrhiza 6:111–118.CrossRefGoogle Scholar
  39. Mleczko, P., 2004, Mycorrhizal and saprobic macrofungi of two zinc wastes in southern Poland, Acta. Biol. Cracov. Bot. 46:25–38.Google Scholar
  40. Morley, G. F., and Gadd, G. M., 1995, Sorption of toxic metals by fungi and clay minerals, Mycol. Res. 99:1429–1438.Google Scholar
  41. Mullen, M. D., Wolf., D. C., Beveridge, T. J., and Bailey, G. W., 1992, Sorption of heavy metals by the soil fungi Aspergillus niger and Mucor rouxii, Soil Biol. Biochem. 24:129–135.CrossRefGoogle Scholar
  42. Nadian, H., Smith, S. E., Alston, A. M., and Murray, R. S., 1997, Effects of soil compaction on plant growth, phosphorus uptake and morphological characteristics of vesiculararbuscular mycorrhizal colonization of Trifolium subterraneum, New Phytol. 135(2):303–311.CrossRefGoogle Scholar
  43. Orlowska, E., Zubek, Sz., Jurkiewicz, A., Szarek- ukaszewska, G., and Turnau, K., 2002, Influence of restoration on arbuscular mycorrhiza of Biscutella laevigata L. (Brassicaceae) and Plantago lanceolata L. (Plantaginaceae) from calamine spoil mounds, Mycorrhiza 12(3):153–160.CrossRefGoogle Scholar
  44. Orlowska, E., Jurkiewicz, A., Anielska, T., Godzik, B., and Turnau, K., 2005, Influence of different arbuscular mycorrhizal fungal (AMF) strains on heavy metal uptake by Plantago lanceolata L., Pol. Bot. Stud. 19:65–72.Google Scholar
  45. Pawtowska, T. E., Btaszkowski, J., and Rühling, A., 1996, The mycorrhizal status of plants colonizing a calamine spoil mound in southern Poland, Mycorrhiza 6:499–505.CrossRefGoogle Scholar
  46. Pielichowska, M., and Wierzbicka, M., 2004, Uptake and localization of cadmium by Biscutella laevigata, a cadmium hyperaccumulator, Acta Biol. Cracov. Bot. 46:57–63.Google Scholar
  47. Pierzynski, G. M., Sims, J. T., and Vance, G. F., 2000, Soil and Environmental Quality, 2nd ed., CRC Press, Boca Raton, FL.Google Scholar
  48. Pierzynski, G., Kulakow, P., Erickson, L., and Jackson, L., 2002, Plant system technologies for environmental management of metals in soils: educational materials. J. Nat. Resour. Life Sci. Educ. 31:31–37.Google Scholar
  49. Rühling A., Bååth, E., Nordgren, A., and Söderström, B., 1984, Fungi in metal-contaminated soil near Gusum Brass Mill, Sweden. Ambio 13:34–36.Google Scholar
  50. Rühling A., and Söderström, B., 1990, Changes in fruitbody production of mycorrhizal and litter decomposing macromycetes in heavy metal polluted coniferous forests in north Sweden, Water, Air, Soil Pollut. 49:375–387.CrossRefGoogle Scholar
  51. Schüβler, A., Schwarzott, D., and Walker, C., 2001, A new phylum, the Glomeromycota: phylogeny and evolution, Mycol. Res. 105(12):1413–1421.Google Scholar
  52. Smith, S. E., and Read, D. J., 1997, Mycorrhizal Symbiosis, Academic Press, San Diego.Google Scholar
  53. Smith, M. R., Charvat, I., and Jacobson, R. L., 1998, Arbuscular mycorrhizae promote establishment of prairie species in a tallgrass prairie restoration, Can. J. Bot. 76:1947–1954.CrossRefGoogle Scholar
  54. Söderström, B. E., 1979, Seasonal fluctuations of active fungal biomass in horizons of a podzolized pine-forest soil in central Sweden, Soil Biol. Biochem. 11:149–154.CrossRefGoogle Scholar
  55. Stommel, M., Mann, P., and Franken P., 2001, EST-library construction using spore RNA of the arbuscular mycorrhizal fungus Gigaspora rosea, Mycorrhiza 10(6):281–285.CrossRefGoogle Scholar
  56. Streitwolf-Engel, R., Boller, T., Wiemken, A., and Sanders I. R., 1997, Clonal growth traits of two Prunella species are determined by co-occurring arbuscular mycorrhizal fungi from a calcareous grassland, J. Ecol. 85:181–191.CrossRefGoogle Scholar
  57. Strzyszcz, Z. 1980. Wtasciwo ciśfizyczne, fizyko-chemiczne i chemiczne odpadow poflotacyjnych rud cynku i o owiu w aspekcie ich biologicznej rekultywacji (Physical, physical-chemical and chemical properties of wastes after flotation of zinc and lead ores with regard to their biological reclamation), Arch. Environ. Prot., 3–4:19–50.Google Scholar
  58. Strzyszcz, Z., 2003, Some problems of the reclamation of waste heaps of zinc and lead ore exploitation in southern Poland, Z. Geol. Wissenschaft. 31(2):167–173.Google Scholar
  59. Szafer, W., 1959, The Vegetation in Poland, Panstwowe Wydawnictwo Naukowe, Warszawa (in Polish).Google Scholar
  60. Szarek-Lukaszewska, G., and Niklinska, M., 2002, Concentration of alkaline and heavy metals in Biscutella laevigata L. and Plantago lanceolata L. growing on valamine spoils (S. Poland), Acta Biol. Cracov. Bot. 44:29–38.Google Scholar
  61. Szuwarzynski, M., 2000, Zaklady Gornicze “Trzebionka” S. A. 1950–2000, Przedsiebiorstwo Doradztwa Technicznego “Kadra”, Krakow.Google Scholar
  62. Thomas, R. S., Franson, R. L., and Bethlenfalvay, G. J., 1993, Separation of arbuscular mycorrhizal fungus and root effect on soil aggregation, Soil Sci. Soc. Am. J. 57:77–81.CrossRefGoogle Scholar
  63. Tobin, J. M., Cooper, D. G., and Neufeld, R. J., 1984, Uptake of metal ions by Rhizopus arrhizus, Environ. Microbiol. 47:821–824.Google Scholar
  64. Turnau, K., and Dexheimer, J., 1995, Acid phosphatase activity in Pisolithus arrhizus mycelium treated with cadmium dust, Mycorrhiza 5:205–211.CrossRefGoogle Scholar
  65. Turnau, K., Kottke, I., and Dexheimer, J., 1996, Toxic element filtering in Rhizopogon roseolus/Pinus sylvestris mycorrhizas collected from calamine dumps, Mycol. Res. 100(1):16–22.CrossRefGoogle Scholar
  66. Turnau, K., 1998, Heavy metal uptake and arbuscular mycorrhiza development of Euphorbia cyparissias on zinc wastes in South Poland, Acta Soc. Bot. Pol. 67(1):105–113.Google Scholar
  67. Turnau, K., Ryszka, P., Gianinazzi-Pearson, V., and van Tuinen, D., 2001, Identification of arbuscular mycorrhizal fungi in soils and roots of plants colonizing zinc wastes in southern Poland, Mycorrhiza 10(4):169–174.CrossRefGoogle Scholar
  68. Turnau, K., Przybylowicz, W., and Mesjasz-Przybylowicz, J., 2001, Heavy metal distribution in Suillus luteus mycorrhizas as revealed by proton microscopy and PIXE, J. Nuclear Instruments 181:649–658.CrossRefGoogle Scholar
  69. Turnau, K., Mleczko, P., Blaudez, D., Chalot, M., and Botton, B., 2002, Heavy metal binding properties of Pinus sylvestris mycorrhizas from industrial wastes, Acta Soc. Bot. Pol. 71(3):253–261.Google Scholar
  70. Turnau, K., and Mesjasz-Przybylowicz, J., 2003, Arbuscular mycorrhiza of Berkheya coddii and other Ni-hyperaccumulating members of Asteraceae from ultramafic soils in South Africa, Mycorrhiza 13(4):185–190.CrossRefGoogle Scholar
  71. Turnau, K., and Kottke, I., 2005, Fungal activity as determined by microscale methods with special emphasis on interactions with heavy metals, in: The Fungal Community. Its organization and Role in the Ecosystem, J. Dighton, J. F. White, and P. Oudemans, eds., Taylor & Francis, CRC Press, Boca Raton, FL, pp. 287–305.Google Scholar
  72. Turnau, K., Jurkiewicz, A., Lingua, G., Barea, J. M., and Gianinazzi-Pearson, V., 2005, Role of arbuscular mycorrhiza and associated microorganisms in phytoremediation of heavy metal-polluted sites, in: Trace Elements in the Environment, M. N. V. Prasad, K. S. Sajwan and R. Naidu, Taylor & Francis, CRC Press, Boca Raton, FL, pp. 229–246.Google Scholar
  73. Urbanska, K. M., 1995, Ecological restoration above the timberline and its demographic assessment, in: Restoration Ecology in Europe, K. M. Urbanska, and K. Grodzinska, eds., Geobotanical Institute SFIT, Zürich, pp. 113–130.Google Scholar
  74. Van der Heijden, M. G. A., Klironomos, J. N., Ursic, M., Moutoglis, P., Streitwolf-Engel, R., Boller, T., Wiemken, A., and Sanders, I. R., 1998, Mycorrhizal fungal diversity determines plant biodiversity ecosystem variability and productivity, Nature 396:69–72.CrossRefGoogle Scholar
  75. Voiblet, C., Duplessis, S., Encelot, N.,and Martin, F., 2001, Identification of symbiosisregulated genes in Eucalyptus globulus-Pisolithus tinctorius ectomycorrhiza by differential hybridization of arrayed cDNAs, Plant J. 25(2):181–191.CrossRefGoogle Scholar
  76. Volesky, B., and Holan, Z. R., 1995, Biosorption of heavy metals, Biotechnol. Progr. 11:235–250.CrossRefGoogle Scholar
  77. Walker, C., and Vestberg, M., 1994, A simple and inexpensive method for producing and maintaining closed pot cultures of arbuscular mycorrhizal fungi, Agr. Sci. Finland 3:233–240.Google Scholar
  78. Weissenhorn, I., and Leyval, C., 1996, Spore germination of arbuscular-mycorrhizal (AM) fungi in soils differing in heavy metal content and other physicochemical properties, Eur. J. Soil Biol. 3:165–172.Google Scholar
  79. Wierzbicka, M., and Potocka, A., 2002 Lead tolerance in plants growing on dry and moist soils, Acta Biol. Cracov. Bot. 44:21–28.Google Scholar
  80. Wright, S.F., and Upadhaya, A., 1996. Extraction of an abundant and unusual protein from soil and comparison with hyphal protein of arbuscular mycorrhizal fungi. Soil Sci. 161(9):575–586.CrossRefGoogle Scholar
  81. Wu, L., and Antonovics, J., 1975, Experimental ecological genetics in Plantago. I. Induction of roots and shoots on leaves for large scale vegetative propagation and metal tolerance testing in P. lanceolata, New Phytol. 75:277–282.CrossRefGoogle Scholar
  82. Wu, L., and Antonovics, J., 1976, Experimental ecological genetics in Plantago. II. Lead tolerance in Plantago lanceolata and Cynodon dactylon from roadside, Ecology 57:205–208.CrossRefGoogle Scholar
  83. Zubek, Sz., Orlowska, E., and Turnau, K., 2003, Mycorrhiza of Viola tricolor L. and Plantago lanceolata L. as indicator of succession tendencies, 4th International Conference on Mycorrhizas, 10–15 August 2003, Montreal, Canada, p.92.Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Katarzyna Turnau
    • 1
  • Elzbieta Orlowska
    • 2
  • Przemyslaw Ryszka
    • 1
    • 3
  • Szymon Zubek
    • 1
  • Teresa Anielska
    • 1
  • Stefan Gawronski
    • 3
  • Anna Jurkiewicz
    • 4
  1. 1.Institute of Environmental Sciences of the Jagiellonian University, Gronostajowa 7Kraków
  2. 2.Materials Research Group, iThemba LABSSouth Africa
  3. 3.Institute of Botany of the Jagiellonian UniversityKrakowPoland
  4. 4.Institute of Molecular Biology, University of AarhusAarhus CDenmark

Personalised recommendations