Skip to main content

CONSTRUCTED WETLANDS AND THEIR PERFORMANCE FOR TREATMENT OF WATER CONTAMINATED WITH ARSENIC AND HEAVY METALS

  • Conference paper
Soil and Water Pollution Monitoring, Protection and Remediation

Part of the book series: NATO Science Series ((NAIV,volume 69))

Abstract

This study investigated the removal mechanisms of arsenic and heavy metals in constructed wetland systems. The biotic and abiotic processes in the wetlands and the influences of plants, soil and micro-organisms on arsenic and heavy metal removal were examined. Various small-scale constructed wetlands were set up in order to study and compare the removal efficiency of laboratory-scale wetland models and small-scale field test systems. In the field test systems, acid mine drainage (AMD) was used as an example of acidic wastewater contaminated with heavy metals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  • APHA, AWWA, and WEF, 1995, Standard Methods for the Examination of Water and Wastewater, 19th ed., APHA, Washington.

    Google Scholar 

  • Bender, J., Washington, J. R., Graves, B., Phillips, P., Abotsi, G., 1994, Deposit of zinc and manganese in an aqueous environment mediated by microbial mats, Water, Air Soil Pollut. 75:195–204.

    Article  CAS  Google Scholar 

  • Bhumbla D. K., Keefer R. F., 1994, Arsenic mobilization and bioavailability in soils, in: Arsenic in the environment, J. O. Nriagu, ed., Wiley, New York, Part I.Cycling and characterization, Chap.3, pp 51–82.

    Google Scholar 

  • Braun, M., Barley, B. Wood, H., 2001, Minewater Treatment, IWA Publishing, London.

    Google Scholar 

  • Brodie, G. A., Britt, C. R., Tomaszewski, T. M., Taylor, H. N., 1993, Anoxic limestone drains to enhance performance of aerobic acid drainage treatment wetlands: experience of the Tennessee Valley Authority, in: Constructed Wetlands for Water Quality Improvement, G. A. Moshiri, ed., Lewis, Chelsea, MI, pp.129–138.

    Google Scholar 

  • Buddhawong, S., Kuschk, P., Mattusch, J., Wiessner, A., Stottmeister, U., 2005, Removal of arsenic and zinc using different laboratory model wetland systems, Eng. Life Sci. 5:247–252.

    Article  CAS  Google Scholar 

  • Le, X. C., 2001, Arsenic speciation in the environment and humans, in: Environmental Chemistry of Arsenic, W. T. Frankenberger Jr., ed., Marcel Dekker, New York, pp. 95- 116.

    Google Scholar 

  • Colmer, T. D., 2003, Long-distance transport of gases in plants: a perspective on internal aeration and radial loss from roots, Plant Cell Environ. 26:17–36.

    Article  CAS  Google Scholar 

  • Davison, J., 1993, Successful acid mine drainage and heavy metal site bioremediation, in: Constructed Wetlands for Water Quality Improvement, G.A. Moshiri, ed., Lewis, Chelsea, MI, pp. 67–170.

    Google Scholar 

  • Dodds-Smith, M. E., Payne, C. A., Gusek, J. J., 1995, Reedbeds at Wheal Jane, Mining Environ. Manage. 3:22–24.

    Google Scholar 

  • Doyle, M. O., Otte, M. L., 1997, Organism-induced accumulation of iron, zinc, and arsenic in wetland soils, Environ. Pollut. 96:1–11.

    Article  CAS  Google Scholar 

  • Duc, C., Adam, K. and Kontopoulos, A. 1998. Mechanism of metal removal by manures and cellulosic waste in anaerobic passive systems. Environmental Issues and Management of Waste in Energy and Mineral Production. SWEMP′98. 18–20 May 1998, Ankara, Turkey.

    Google Scholar 

  • Dushenko, W. T., Bright, D. A., Reimer, K. J., 1995, Arsenic bio-accumulation and toxicity in aquatic macrophytes exposed to gold-mine effluent: relationships with environmental partitioning, metal uptake and nutrients, Aquat. Botany 50:141–158.

    Article  CAS  Google Scholar 

  • Foster, P. L., 1982, Species associations and metal contents of algae from rivers polluted by heavy metals, Freshwater Biol. 12:17–39.

    Article  CAS  Google Scholar 

  • Le, X. C., Lu, X., Gong Z., Ma, M., Chytic, J., Kalke, R., 2001, Arsenic speciation studies of human exposure to and metabolism of arsenic, Epidemiol. 12(4):484.

    Google Scholar 

  • Hoffland, E., van den Boogaard, R., Nelemans, J., Findenegg, G., 1992, Biosynthesis and root exudation of citric and malic acids in phosphate-starved rape plants, New Phytol. 122:675–680.

    Article  CAS  Google Scholar 

  • Jacob, D. L., Otte, M. L., 2003, Conflicting Processes in the wetland plant rhizosphere: metal retention or mobilization, Water, Air, Soil Pollut: Focus 3(1): 91–104.

    Article  CAS  Google Scholar 

  • Jackson, M. B., and Armstrong, W., 1999, Formation of aerenchyma and the processes of plant ventilation in relation to soil flooding and submergence, Plant Biol. 3:274–287.

    Google Scholar 

  • Kuschk, P. 1991. Untersuchungen zur mikrobiologisch anaeroben Reinigung von Braunkohlepyrolyseabwässern, Ph. D. Thesis. University Oldenburg (Germany).

    Google Scholar 

  • Matagi, S. V., Swai, D., Mugabe, R., 1998, A review of heavy metal removal mechanisms in wetlands, Afr. J. Trop. Hydrobiol. Fish. 8:23–35.

    Google Scholar 

  • Mays, P. A., Edwards, G. S., 2001, Comparison of heavy metal accumulation in a natural wetland and constructed wetlands receiving acid mine drainage, Ecol. Eng. 16:487–500.

    Article  Google Scholar 

  • Mendelssohn, I. A., Kleiss, B. A., Wakeley, J. S., 1995, Factors controlling the formation of oxidized root channels: a review, Wetlands 15:37–46.

    Article  Google Scholar 

  • Nishimura T., Wang Q., Umetsu Y., 1996, Removal of arsenic from process liquors by oxidation of iron (II), arsenic (III) and sulfur (IV) with oxygen. in: Iron Control and Disposal, J.E Dutrizac and G.B. Harris (eds.) Canadian Institute of Mining Metallurgy and Petroleum, Montreal, Canada, pp. 535–548.

    Google Scholar 

  • Phillips, P., Bender, J, Simms, R., Rodriquez-Eaton, S. Britt, C., 1994, Manganese and iron removal from coal mine drainage by use of a green algae-microbial mat consortium, Proceedings International Land Reclamation & Mine Drainage Conference and 3rd International Conference on the Abatement of Acidic Drainage. 2:148–157.

    Google Scholar 

  • Rethmeier, J., Rabenstein, A., Langer, M., Fischer, U., 1997, Detection of traces of oxidized and reduced sulfur compounds in small samples by combination of different highperformance liquid chromatography methods, J. Chromatogr. A. 760:295–302.

    Article  CAS  Google Scholar 

  • Ritcey, G.M. 1989. Tailings management: Problems and solutions in the mining industry, Elsevier, Amsterdam.

    Google Scholar 

  • Riveros, P.A., Dutrizac, J.E., 2000, A review of arsenic disposal practices for the giant mine Yellowknife, Northwest Territories, http://nwt-tno.inac-ainc.gc.ca/giant/pdf/rpts/- D14-AD_e.pdf.

    Google Scholar 

  • Robins, R. G., Wong, P. L. M., Nishimura, T., Khoe, G. H., Huang, J. C. Y., 1991, Basic ferric arsenates - non existent, Cairns ′91 Randol Gold Forum, H. von Michaelis (ed.), The Minerals, Metals and Materials Society, Warrendale, PA, USA, pp. 31–39.

    Google Scholar 

  • Robins, R. G., Jayaweera, L. D., 1992, Arsenic in gold processing, Min. Proc. Extr. Met. Rev. 9:255–271.

    Google Scholar 

  • Stoltz, E., Greger, M., 2002, Accumulation properties of As, Cd, Cu, Pb and Zn by four wetland plant species growing on submerged mine tailings, Environ. Exper. Bot. 47:271- 280.

    Article  CAS  Google Scholar 

  • Stumm, W. and Morgan, J.J. 1996. Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters, 3rd ed., John Wiley & Sons, New York.

    Google Scholar 

  • Wang, T., Peverly, J. H., 1996, Oxidation states and fractionation of plaque iron on roots of common reeds, Soil Sci. Soc. Am. J. 60:323–329.

    Article  CAS  Google Scholar 

  • Wildeman, T. R. Laudon, L. S., 1989, Use of wetlands for treatment of environmental problems in mining: non-coal-mining applications, in: Constructed Wetlands for Wastewater Treatment: Municipal, Industrial and Agricultural, D. A. Hammer (ed.), Lewis, Chelsea, MI, pp. 221–232.

    Google Scholar 

  • Williams, M., Fordyce, F., Paijitprapapon, A., Charoenchaisri, P., 1996, Arsenic contamination in surface drainage and groundwater in part of the southeast Asian tin belt, Nakhon Si Thammarat Province, southern Thailand, Environ.Geol. 27:16–33.

    Article  CAS  Google Scholar 

  • Ziemkiewicz, P. F., Skousen, J. G., Brant, D. L., Sterner, P. L., Lovett, R.J., 1997, Acid mine drainage treatment with armoured-limestone in open limestone channels, J. Environ. Qual. 26:1017–1034.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Stottmeister, U., Buddhawong, S., Kuschk, P., Wiessner, A., Mattusch, J. (2006). CONSTRUCTED WETLANDS AND THEIR PERFORMANCE FOR TREATMENT OF WATER CONTAMINATED WITH ARSENIC AND HEAVY METALS. In: Twardowska, I., Allen, H.E., Häggblom, M.M., Stefaniak, S. (eds) Soil and Water Pollution Monitoring, Protection and Remediation. NATO Science Series, vol 69. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4728-2_27

Download citation

Publish with us

Policies and ethics