Skip to main content

Natural Resources and Agriculture

  • Chapter
Introducing Biological Rhythms
  • 1227 Accesses

Abstract

Long before our current clocks and calendars came into use and the endogenous characteristics of biological rhythms became known, there was an emphasis already upon the timing of events (Ecclesiastes 3). Some of the earliest written records pertaining to the rhythmic nature of life are found within the domains of natural resources and agriculture. Very likely, early humans were aware of cyclic activity, such as seasonal migration, folding and unfolding of leaves and flowers, and activity and rest in animals. Most of these early observations of cyclic changes were probably viewed as passive responses to the cyclic environment, for it was not until the twentieth century that the scientific foundations of biological rhythms became established (see Chapter 3 on Time).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alheit J, Hagen E. (1997) Long-term climate forcing of European starling and sardine populations. Fisheries Oceanography 6: 130–139.

    Google Scholar 

  • Ali MA. (1992) Rhythms in Fishes. NATO ASI Series A: Life Sciences, Vol. 236, Plenum Press, New York, 348 pp.

    Google Scholar 

  • Anderson-Bernadas C, Cornelissen G, Turner CM, Koukkari WL. (1997) Rhythmic nature of thigmomorphogenesis and thermal stress of Phaseolus vulgaris L. shoots. J Plant Physiol 151: 575–580.

    CAS  Google Scholar 

  • Arthur JM, Harvill EK. (1937) Plant growth under continuous illumination from sodium vapor lamps supplemented by mercury arc lamps. Contrib Boyce Thompson Inst 8: 433–434.

    CAS  Google Scholar 

  • Aschoff J. (1964) Die Tagesperiodik licht-und dunkelaktiver Tiere. Rev Suisse Zool 71:528–558.

    Google Scholar 

  • Berthold P, Gwinner E, Klein H. (1972) Circannuale Periodik bei Grasmücken I. Periodik des Körpergewichtes, der Mauser und der Nachtunruhe bei Sylvia atricapilla und S. borin unter verschiedenen konstanten Bedingunger. J Orniothol 113: 170–190.

    Google Scholar 

  • Berners DJ. (1885) Bibliotheca Curiosa. A Treatyse of Fysshynge Wyth An Angle. Originally printed by Wynkyn de Worde in 1496. Edited by “Piscator.” Privately printed, Edinburgh, 36 pp.

    Google Scholar 

  • Bitman J, Lefourt A, Wood DL, Stroud B. (1984) Circadian and ultradian temperature rhythms of lactating cows. J Dairy Sci 67: 1014–1023.

    PubMed  CAS  Google Scholar 

  • Boudette NE. (2003) Effort to save butterflies casts Alpine villages in a whole new light — Amateur lepidopterist leads drive to switch to yellow street lamps. Wall Street J (Europe). Brussels: January 29, 2003, pg. A.1.

    Google Scholar 

  • Brower LP. (1995) Understanding and misunderstanding the migration of the monarch butterfly (Nymphalidae) in North America: 1857–1995. J Lepid Soc 49: 304–385.

    Google Scholar 

  • Brower L. (1996) Monarch butterfly orientation: missing pieces of a magnificent puzzle J Exp Biol 199 (Pt 1): 93–103.

    PubMed  Google Scholar 

  • Buchanan BW. (1993) Effects of enhanced lighting on the behavior of nocturnal frogs. Animal Behav 45(5): 893–899.

    Google Scholar 

  • Cane MA, Eshel G, Buckland RW. (1994) Forecasting Zimbabwean maize yield using eastern equatorial Pacific sea surface temperature. Nature 370: 204–205.

    Google Scholar 

  • Caspari EW, Marshak RE. (1965) The rise and fall of Lysenko. Science 149: 275–278.

    Google Scholar 

  • Catchpole A, Auliciems A. (1999) Southern oscillation and the northern Australian prawn catch. Intl J Biometeorol 43: 110–112.

    Google Scholar 

  • Cermak J, Jenik J, Kucera J, Zidek V. (1984) Xylem water flow in a crack willow tree (Salix fragilis L.) in relation to diurnal changes of environment. Oecologia 64(2):145–151.

    Google Scholar 

  • Cochran WW, Graber RR. (1958) Attraction of nocturnal migrants by lights on a television tower. Wilson Bull 70(4): 378–380.

    Google Scholar 

  • Cole CL, Adkisson PL. (1964) Daily rhythm in the susceptibility of an insect to a toxic agent. Science 144: 1148–1149.

    CAS  Google Scholar 

  • Contor CR, Griffith JS. (1995) Nocturnal emergence of juvenile rainbow trout from winter concealment relative to light intensity. Hydrobiologia 299(3): 179–183.

    Google Scholar 

  • Couderchet M, Koukkari WL. (1987) Daily variations in the sensitivity of soybean seedlings to low temperature. Chronobiol Intl 4: 537–541.

    CAS  Google Scholar 

  • De Moraes CM, Mescher MC, Tumlinson JH. (2001) Caterpillar-induced nocturnal plant volatiles repel conspecific females. Nature 410: 577–580.

    PubMed  Google Scholar 

  • Dodson S. (1990) Predicting diel vertical migration of zooplankton. Limnol Oceanogr 35:1195–1200.

    Google Scholar 

  • Doran DL, Anderson RN. (1976) Effectiveness of bentazon applied at various times of the day. Weed Sci 24: 567–570.

    CAS  Google Scholar 

  • Drake DJ, Evans JW. (1978) Cortisol secretion pattern during prolonged ACTH infusion in dexamethasone treated mares. J Interdiscipl Cycle Res 9: 88–96.

    Google Scholar 

  • Duke SH, Friedrich JW, Schrader LE, Koukkari WL. (1978) Oscillations in the activities of enzymes of nitrate reduction and ammonia assimilation in Glycine max and Zea mays. Physiol Plant 42: 269–276.

    CAS  Google Scholar 

  • Eesa N, Cutkomp LK, Cornelissen G, Halberg F. (1987) Circadian change in Dichloros lethality (LD50) in the cockroach in LD 14:10 and continuous red light. In: Advances in Chronobiology, Part A. Pauly JE, Scheving LE, eds. New York: Alan Liss, Inc., pp. 265–279.

    Google Scholar 

  • Ehret DL, Ho LC. (1986) Effects of osmotic potential in nutrient solution on diurnal growth of tomato fruit. J Exp Bot 37(182): 1294–1302.

    Google Scholar 

  • Elfving DC, Kaufmann MR. (1972) Diurnal and seasonal effects of environment on plant water relations and fruit diameter of citrus. J Amer Soc Hort Sci 97: 566–570.

    Google Scholar 

  • Elliott JM. (1967) The life histories and drifting of the Plecoptera and Ephemeroptera in a Dartmoor stream. J Anim Ecol 36: 343–362.

    Google Scholar 

  • Erwin J, Warner R. (2002) Determination of photoperiodic response group and effect of supplemental irradiance on flowering of several bedding plant species. ACTA Hort 580:95–99.

    Google Scholar 

  • Figala J, Tester JR, Seim G. (1984) Analysis of the circadian rhythm of a snowshoe hare (Lepus americanus, Lagomorpha) from telemetry data. Vest Cs Spol Zool 48: 14–23.

    Google Scholar 

  • Figala J, Tester JR. (1986) Comparison of seasonal rhythms of activity of grey squirrels (Sciurus carolinensis, Rodentia) in captivity and in the wild. Vest Cs Spol Zool 50: 33–48.

    Google Scholar 

  • Figala J, Tester JR. (1990) Chronobiology and agroecosystems. In: Chronobiology: Its Role in Clinical Medicine, General Biology and Agriculture, Part B, Prog Clin Biol Res, Vol. 341B. Hayes DK, Pauly JE, Reiter RJ, eds. New York: Wiley-Liss, pp. 793–807.

    Google Scholar 

  • Fingerman M, Lago AD, Lowe ME. (1958) Rhythms of locomotor activity and O2-Consumption of the grasshopper Romalea microptera. Amer Mid Nat 59: 58–66.

    CAS  Google Scholar 

  • Forbes EB. (1901) Fight Grasshoppers with oil in your hopperdozer. Minn Science 31(1):81 (Spring 1975).

    Google Scholar 

  • Forchhammer MC, Post E, Stenseth NC. (1998) Breeding phenology and climate. Nature 391: 29–30.

    CAS  Google Scholar 

  • Frank KD. (1988) Impact of outdoor lighting on moths: an assessment. J Lepidop Soc 42(2): 63–93.

    Google Scholar 

  • Friend DJC, Helson VA. (1976) Thermoperiodic effects on the growth and photosynthesis of wheat and other crop plants. Bot Gaz 137: 75–84.

    Google Scholar 

  • Fromentin JM, Planque B. (1996) Calanus and environment in the eastern North Atlantic: II. Influence of the North Atlantic Oscillation on C. finmarchicus and C. helgolandicus. Mar Ecol Prog Ser 134: 111–118.

    Google Scholar 

  • Froy O, Gotter AL, Casselman AL, Reppert SM. (2003) Illuminating the circadian clock in monarch butterfly migration. Science 300(5623): 1303–1305.

    PubMed  CAS  Google Scholar 

  • Garner WW, Allard HA. (1920) Effect of the relative length of day and night and other factors of the environment of growth and reproduction in plants. J Agric Res 18: 553–606.

    Google Scholar 

  • Goehring L, Oberhauser KS. (2002) Effects of photoperiod, temperature and host plant age on induction of reproductive diapause and development time in Danaus plexippus. Ecol Entom 27: 674–685.

    Google Scholar 

  • Goldsmith GW, Hafenrichter AL. (1932) Anthokinetics, The Physiology and Ecology of Floral Movements. Carnegie Institution of Washington. Publication No. 420, 198 pp.

    Google Scholar 

  • Gomes WR, Joyce MC. (1975) Seasonal changes in serum testosterone in adult rams. J Anim Sci 41(5): 1373–1375.

    PubMed  CAS  Google Scholar 

  • Guillaume FM, Kennedy BW, Carlson L, Koukkari WL. (1986) Leaf movement alterations on bean plants with common bacterial blight. Phytopath 76: 270–272.

    Google Scholar 

  • Gwinner E. (1977) Circannual migrations in bird migration. Ann Rev Ecol Syst 8: 381–405.

    Google Scholar 

  • Gwinner E, Wiltschko W. (1978) Endogenously controlled changes in migratory direction of the garden warbler, Sylvia borin. J Comp Physiol 125: 267–273.

    Google Scholar 

  • Gwinner E, Wiltschko W. (1980) Circannual changes in migratory orientation of the garden warbler, Sylvia borin. Behav Ecol Sociobiol 7: 73–78.

    Google Scholar 

  • Gwinner E. (2003) Circannual rhythms in birds. Curr Opin Neurobiol 13(6): 770–778.

    PubMed  CAS  Google Scholar 

  • Halaban R, Hillman WS. (1970) Response of Lemna perpusilla to periodic transfer to distilled water. Plant Physiol 46: 641–644.

    PubMed  CAS  Google Scholar 

  • Halaban R, Hillman WS. (1971) Factors affecting the water-sensitive phase of flowering in the short day plant Lemna perpusilla. Plant Physiol 48: 760–764.

    PubMed  CAS  Google Scholar 

  • Halberg F, Bittner JJ, Gully RJ, Albrecht PG, Brackney EL. (1955) 24-hour periodicity and audiogenic convulsions in I mice of various ages. Proc Soc Exp Biol Med 88(2): 169–173.

    PubMed  CAS  Google Scholar 

  • Halberg F. (1960) Temporal coordination of physiologic function. In: Biological Clocks. Cold Spring Harbor Symposia on Quantitative Biology, Cold Spring Harbor, LI. The Biological Laboratory: New York, Vol. 25, 289–310.

    Google Scholar 

  • Halberg J, Halberg F, Lee JK, Cutkomp L, Sullivan WN, Hayes DK, Cawley BM, Rosenthal J. (1974) Similar timing of circadian rhythms in sensitivity to pyrethrum of several insects. Intl J Chronobiol 2: 291–296.

    Google Scholar 

  • Hamner KC. (1960) Photoperiodism and circadian rhythms. In: Biological Clocks. Cold Spring Harbor Symposia on Quantitative Biology, Vol. 25. New York: Cold Spring Harbor, pp. 269–277.

    Google Scholar 

  • Haney JF. (1993) Environmental control of diel vertical migration behaviour. Arch Hydrobiol Beih Ergebn Limnol 39: 1–17.

    Google Scholar 

  • Helms K, McIntyre GA. (1967) Light-induced susceptibility of Phaseolus vulgaris L. to tobacco mosaic virus infection: II. Daily variation in susceptibility. Virology 32(3): 482–488.

    PubMed  CAS  Google Scholar 

  • Hendricks SB. (1956) Control of growth and reproduction by light and darkness. Amer Sci 44(3): 229–247.

    Google Scholar 

  • Hendrix DL, Huber SC. (1986) diurnal fluctuations in cotton leaf carbon exchange rate, sucrose synthesizing enzymes, leaf carbohydrate content and carbon export. In: Plant Biology, Vol. 1. Phloem Transport. Cronshaw J, Lucas WJ, Giaquinta RT, eds. New York: Alan R. Liss, pp. 369–373.

    Google Scholar 

  • Henson CA, Duke SH, Koukkari WL. (1986) Rhythmic oscillations in starch concentration and activities of amylolytic enzymes and invertase in Medicago sativa nodules. Plant Cell Physiol 27(2): 233–242.

    CAS  Google Scholar 

  • Henson CA, Duke SH. (1990) Oscillations in plant metabolism. In: Chronobiology: Its Role in Clinical Medicine, General Biology and Agriculture, Part B, Prog Clin Biol Res, Vol. 341B. Hayes DK, Pauly JE, Reiter RJ, eds. New York: Wiley-Liss, pp. 821–834.

    Google Scholar 

  • Hillman WS. (1956) Injury of tomato plants by continuous light and unfavorable photoperiodic cycles. Planta 114: 119–129.

    Google Scholar 

  • Hillman WS. (1962) The Physiology of Flowering. New York: Holt, Rinehart & Winston, 164 pp.

    Google Scholar 

  • Holt CS, Waters TF. (1967) Effect of light intensity on the drift of stream invertebrates. Ecology 48(2): 225–234.

    Google Scholar 

  • Humphrey J, Shogren B. (1995) Wisconsin & Minnesota Trout Streams. A Fly-Angler’s Guide. Woodstock, VT: Backcountry Publication, 263 pp.

    Google Scholar 

  • Kadono H, Usami E. (1983) Ultradian rhythm of chicken body temperature under continuous light. Jpn J Vet Sci 45(3): 401–405.

    CAS  Google Scholar 

  • Kennedy BW, Koukkari WL. (1987) Chronophytopathology. In Advances in Chronobiology. Part A. Pauly JE, Scheving LE, eds. New York, Alan R. Liss, Inc., pp. 95–103.

    Google Scholar 

  • Kennedy BW, Denny R, Carlson L, Koukkari WL. (1986) Effect of bacterial infection on speed and horizontal trajectory of circumnutation in bean shoots. Phytopath 76: 712–715.

    Google Scholar 

  • Kennedy BW, Denny R, Fetzer JL, Hills R. (1990) Modified behavior oscillations in diseased plants and its implication to epidemiology and crop loss assessment. In: Chronobiology: Its Role in Clinical Medicine, General Biology and Agriculture, Part B, Prog Clin Biol Res, Vol. 341B. Hayes DK, Pauly JE, Reiter RJ, eds. New York: Wiley-Liss, pp. 867–881.

    Google Scholar 

  • Kerner von Marilaun A. (1895) The Natural History of Plants, their Forms, Growth, Reproduction, and Distribution. New York: H. Holt, p. 215.

    Google Scholar 

  • Kessler A, Baldwin IT. (2001) Defensive function of herbivore-induced plant volatile emissions in nature. Science 291: 2141–2144.

    PubMed  CAS  Google Scholar 

  • Kettlewell PS, Sothern RB, Koukkari WL. (1999) U.K. wheat quality and economic value are dependent on the North Atlantic Oscillation. J Cereal Science 29: 205–209.

    Google Scholar 

  • King AI, Reid MS, Patterson BD. (1982) Diurnal changes in the chilling sensitivity of seedlings. Plant Physiol 70: 211–214.

    PubMed  Google Scholar 

  • Klotz JH. Reid BL. (1993) Nocturnal orientation in the black carpenter ant Componotus pennsylvanicus Degeer (Hymenoptera: Formicidae). Insectes Sociaux 40(1): 95–106.

    Google Scholar 

  • Koukkari WL. (1974) Rhythmic movements of Albizzia julibrissin pinnules. In: Chronobiology. Scheving LE, Halberg F, Pauly JE, eds. Igaku Shoin Ltd., Tokyo, pp. 676–678.

    Google Scholar 

  • Koukkari WL, Johnson MA. (1979) Oscillations of leaves of Abutilon theophrasti (velvetleaf) and their sensitivity to bentazon in relation to low and high humidity. Physiol Plant 47: 158–162.

    CAS  Google Scholar 

  • Koukkari WL, Warde SB. (1985) Rhythms and their relations to hormones. In: Encyclopedia of Plant Physiology, New Series, Vol. 11, Hormonal Regulation of Development III. Role of environmental Factors. Pharis RP, Reid DM, eds. Berlin: Springer-Verlag, pp. 37–77.

    Google Scholar 

  • Koukkari WL, Duke SH, Hayes DK. (1990) Biological oscillations and agriculture: A brief introduction. In: Chronobiology: Its Role in Clinical Medicine, General Biology and Agriculture, Part B, Prog Clin Biol Res, Vol. 341B. Hayes DK, Pauly JE, Reiter RJ, eds. New York: Wiley-Liss, pp. 785–792.

    Google Scholar 

  • LaFontaine G. (1981) Caddisflies. New York: Nick Lyons Books, 336 pp.

    Google Scholar 

  • Lewczuk B, Przybylska-Gornowicz B. (2000) The effect of continuous darkness and illumination on the function and the morphology of the pineal gland in the domestic pig: Part I. The effect on plasma melatonin level. Neuroendocrinol Lett 21(4): 283–291.

    PubMed  CAS  Google Scholar 

  • Lewis H, Went FW. (1954) Plant growth under controlled conditions: IV. Response of California annuals to photoperiod and temperature. Amer J Bot 32: 1–12.

    Google Scholar 

  • Liu Y, Merrow M, Loros JJ, Dunlap JC. (1998) How temperature changes reset a circadian oscillator. Science 281: 825–829.

    PubMed  CAS  Google Scholar 

  • Lockwood GW, Floyd RD, Thompson DT. (1990) Sky glow and outdoor lighting trends since 1976 at the Lowell Observatory. Publ Astron Soc Pac 162: 481–491.

    Google Scholar 

  • Lysenko TD. (1954) Agrobiology, Essays on Problems of Genetics, Plant Breeding and Seed Growing. Moscow: Foreign Languages Publication, 636 pp.

    Google Scholar 

  • Maharaj V, Carpenter JE. (1996) The 1996 Economic Impact of Sport Fishing in Minnesota. Alexandra, VA: Amer Sportfishing Assoc., 10 pp.

    Google Scholar 

  • Maier CT. (1996) Connecticut is awaiting return of the periodical cicada. Frontiers Plant Sci 48(2): 4–6.

    Google Scholar 

  • Marbury MO. (1988) Favorite Flies and Their Histories. Secaucus, NJ: The Wellfleet Press, 552 pp. [Originally published in 1892.]

    Google Scholar 

  • Marques M, Waterhouse J, eds. (2004) Rhythms and Ecology — Do chronobiologists still remember Nature? (special issue). J Biol Rhythms 35(1/2): 1–170.

    Google Scholar 

  • Martinson KB, Sothern RB, Koukkari WL, Durgan BR, Gunsolus JL. (2002) Circadian response of annual weeds to Glyphosate and Glufosinate. Chronobiol Intl 19(2): 405–422.

    CAS  Google Scholar 

  • Matthews REF. (1953) Factors affecting the production of local lesions by plant viruses: I. Effects of time of day of inoculation. Ann Appl Biol 40: 377–383.

    Google Scholar 

  • Matthews REF. (1953) Factors affecting the production of local lesions by plant viruses: II. Some effects of light, darkness and temperature. Ann Appl Biol 40: 556–565.

    Google Scholar 

  • Matthews REF. (1991) Plant Virology, 3rd edn. New York: Academic Press, 835 pp.

    Google Scholar 

  • Maxson SJ. (1977) Activity patterns of female ruffed grouse during the breeding season. The Wilson Bulletin 89: 439–455.

    Google Scholar 

  • McMichael BL, Hanny BW. (1977) Endogenous levels of abscisic acid in water-stressed cotton leaves. Agron J 69: 979–982.

    CAS  Google Scholar 

  • Michaels SD, Amasino RM. (2000) Memories of winter: vernalization and the competence to flower. Plant Cell Environ 23: 1145–1153.

    Google Scholar 

  • Miller CS. (1975) Short interval leaf movements of cotton. Plant Physiol 55: 562–566.

    PubMed  Google Scholar 

  • Miller R, Martinson KB, Sothern RB, Durgan BR, Gunsolus JL. (2003) Circadian response of annual weeds in a natural setting to high and low application doses of four herbicides with different modes of action. Chronobiol Intl 20(2): 299–324.

    CAS  Google Scholar 

  • Mohotti AJ, Lawlor DW. (2002) Diurnal variation of photosynthesis and photoinhibition in tea: effects of irradiance and nitrogen supply during growth in the field. J Exp Bot 53(367): 313–322.

    PubMed  CAS  Google Scholar 

  • Moore MV, Pierce SM, Walsh HM, Kvolvik SK, Lim JD. (2001) Urban light pollution alters the diel migration of Daphnia. Verh Intl Verein Limnol 27(2): 779–782.

    Google Scholar 

  • Moore-Ede MC, Sulzman FM, Fuller CA (1982) The Clocks That Time Us. Physiology of the Circadian Timing System. Cambridge, MA: Harvard University Press, 448 pp.

    Google Scholar 

  • Mrosovsky N, Kingsmill SF. (1985) How turtles find the sea. Z Tierpsychol 67: 237–256.

    Google Scholar 

  • Nixon EH, Markhart AH III, Koukkari WL. (1987) Stomatal aperture oscillations of Abutilon theophrasti Medic. and Hordeum vulgare L. examined by three techniques. In: Advances in Chronobiology, Part A. Pauly JE Scheving LE, eds. New York: Alan R. Liss, pp. 67–79.

    Google Scholar 

  • Noeske-Hallin TA, Spieler RE, Parker NC, Suttle MA. (1985) Feeding time differentially affects fattening and growth of channel catfish. J Nutr 115(9): 1228–1232.

    PubMed  CAS  Google Scholar 

  • Oberhauser KS. (1999) Monarchs in the Classroom: an inquiry-based curriculum for grades 6–8. 3rd edn. Univ. Minn.: Dept. Ecol. Evol. Behav., 216 pp.

    Google Scholar 

  • Ogden LJE. (1996) Collision Course: The hazards of lighted structures and windows to migrating birds. Special Report. Toronto: World Wildlife Fund Canada and the Fatal Light Awareness Program, 45 pp.

    Google Scholar 

  • Onyeocha FA, Fuzeau-Braesch S. (1991) Circadian rhythm changes in toxicity of the insecticide dieldrin on larvae of the migratory locust Locusta migratoria migratorioides. Chronobiol Intl 8(2): 103–109.

    CAS  Google Scholar 

  • Peters A, Verhoeven KJF. (1994) Impact of artificial lighting on the seaward orientation of hatchling Loggerhhead turtles. J Herpetol 28(1): 112–114.

    Google Scholar 

  • Petersen A. (2001) Night lights. Amer Sci 89: 24–25.

    Google Scholar 

  • Price S, Mesure M. (1996) Preface. In: Collision Course: The hazards of lighted structures and windows to migrating birds. Special Report. Ogden LJE, ed. Toronto: World Wildlife Fund Canada and the Fatal Light Awareness Program, 45 pp.

    Google Scholar 

  • Rathinavel S, Sundararajan KS. (2003) Chronopathological aspects of disease incidence in rice (Oryza sativa L). Chronobiol Intl 20(1): 81–96.

    CAS  Google Scholar 

  • Reinberg, A. (1967) The hours of changing responsiveness or susceptibility. Perspect Biol Med 11: 111–128.

    Google Scholar 

  • Reinberg A, Smolensky MH. (1983) Introduction to chronobiology. In: Biological Rhythms and Medicine. Cellular, Metabolic, Physiopathologic, and Pharmacologic Aspects. Reinberg A, Smolensky MH, eds. New York: Springer-Verlag, pp. 1–21.

    Google Scholar 

  • Rikin A, St John JB, Wergin WPP, Anderson JD. (1984) Rhythmical changes in the sensitivity of cotton seedlings to herbicides. Plant Physiol 76: 297–300.

    PubMed  CAS  Google Scholar 

  • Rimmington GM, Nicholls N. (1993) Forecasting wheat yields in Australia with the Southern Oscillation Index. Aust J Agric Res 44(4): 625–632.

    Google Scholar 

  • Ringelberg J. (1987) Light induced behaviour in Daphnia. In: Daphnia. Peters RH, De Bernardii R, eds. Verbania Palanza: Mem 1st Ital Idrobiol, pp. 285–323.

    Google Scholar 

  • Rongstad OJ, Tester JR. (1971) Behavior and maternal relations of young snowshoe hares. J Wildlife Manage 35(2): 338–346.

    Google Scholar 

  • Rowan W. (1926) On photoperiodism, reproductive periodicity, and the annual migrations of birds and certain fishes. Proc Boston Soc Nat Hist 38: 147–189.

    Google Scholar 

  • Sagar PM, Glova GJ. (1992) Diel changes in the abundance and size composition of invertebrate drift in five rivers in South Island, New Zealand. New Zeal J Mar Freshwater Res 26: 103–114.

    Google Scholar 

  • Sage LC. (1992) Pigment of the Imagination, A History of Phytochrome Research. San Diego: Academic Press, 562 pp.

    Google Scholar 

  • Salisbury FB, Ross CW. (1992) Plant Physiology, 4th edn. Belmont: Wadsworth, 682 pp.

    Google Scholar 

  • Salmon M, Tolbert MG, Painter DP, Goft M, Reiners R. (1995) Behavior of loggerhead sea turtles on an urban beach. II. Hatchling orientation. J Herpetol 29(4): 568–576.

    Google Scholar 

  • Salmon M, Witherington BE. (1995) Artificial lighting and seafinding by loggerhead hatchlings: Evidence for lunar modulation Copeia 4: 931–938.

    Google Scholar 

  • Sandberg G, Odén P-C, Dunberg A. (1982) Population variation and diurnal changes in the content of indole-3-acetic acid of pine seedlings (Pinus sylvestris L.) grown in a controlled environment. Physiol Plant 54: 375–380.

    CAS  Google Scholar 

  • Schuster JL. (1990) Plains pricklypear control by night applications of phenoxy herbicides. Proc South Weed Sci 23: 245–249.

    Google Scholar 

  • Schwiebert E. (1973) Nypmhs. A Complete Guide to Naturals and Their Imitations. New York: Winchester Press, 339 pp.

    Google Scholar 

  • Schwemmle B, Lange OL. (1959) Endogen-tagesperiodische schwankungen der hitzresistenz bei Kalanchoë blossfeldiana. Planta 53: 134–144.

    Google Scholar 

  • Schwemmle B. (1960) Thermoperiodic effects and circadian rhythms in flowering plants. In: Biological Clocks. Cold Spring Harbor Symposia on Quantitative Biology, Vol. 25. New York: Cold Spring Harbor, pp. 239–243.

    Google Scholar 

  • Scott BIH, Gulline HF. (1972) Natural and forced circadian oscillations in the leaf of Trifolium repens. Aust J Biol Sci 25: 61–76.

    Google Scholar 

  • Slack CR. (1965) The physiology of sugar-cane: VIII. Diurnal fluctuations in the activity of soluble invertase in elongating internodes. Aust J Biol Sci 18: 781–788.

    CAS  Google Scholar 

  • Sothern RB, Okusami AE, Koukkari WL. (2001) Circadian aspects of wind-induced thigmomorphogenesis on shoot elongation of pole beans (abstract). Chronobiol Intl 18(6): 1192–1193.

    Google Scholar 

  • Spieler RE. (1990) Chronobiology and aquaculture: Neglected opportunities. In: Chronobiology: Its Role in Clinical Medicine, General Biology and Agriculture, Part B, Prog Clin Biol Res, Vol. 341B. Hayes DK, Pauly JE, Reiter RJ, eds. New York: Wiley-Liss, pp. 905–920.

    Google Scholar 

  • Stark JC, Halderson JL. (1987) Measurement of diurnal changes in potato tuber growth. Amer Potato J 64: 245–248.

    Google Scholar 

  • Stolen PD. (1974) Fall and winter movements and activity of muskrats in East-Central Minnesota. Master of Science Thesis, Univ. Minn., 74 pp.

    Google Scholar 

  • Svensson AM, Rydell J. (1998) Mercury vapour lamps interfere with the bat defense of tympanate moth (Operophtera spp.; Geometridae). Anim Behav 55: 223–226.

    PubMed  Google Scholar 

  • Tester JR. (1987) Changes in daily activity rhythms of some free-ranging animals in Minnesota. Can Field-Naturalist 101: 13–21.

    Google Scholar 

  • Tester JR, Figala J. (1990) Effects of biological and environmental factors on activity rhythms of wild animals. In: Chronobiology: Its Role in Clinical Medicine, General Biology and Agriculture, Part B, Prog Clin Biol Res, Vol. 341B. Hayes DK, Pauly JE, Reiter RJ, eds. New York: Wiley-Liss, pp. 809–819.

    Google Scholar 

  • To K-Y, Suen D-F, Chen S-CG. (1999) Molecular characterization of ribulose-1,5-bisphospate carboxylase/oxygenase activase in rice leaves. Planta 209: 66–76.

    PubMed  CAS  Google Scholar 

  • Touitou Y, Haus E. (1992) Biologic Rhythms in Clinical and Laboratory Medicine. Berlin: Springer-Verlag, 730 pp.

    Google Scholar 

  • Tournois J. (1914) Études sur la sexualité du Houblon. Ann Sci Nat (Bot) 19: 49–191.

    Google Scholar 

  • Upcroft JA, Done J. (1972) Evidence for a complex control system for nitrate reductase in wheat leaves. FEBS Lett 21(2): 142–144.

    PubMed  CAS  Google Scholar 

  • Waters TF. (1968) Diurnal periodicity in the drift of a day-active stream invertebrate. Ecology 49(1): 152–153.

    Google Scholar 

  • Waters TF. (1972) The drift of stream insects. Ann Rev Entomol 17: 253–272.

    Google Scholar 

  • Weaver ML, Nylund RE. (1963) Factors influencing the tolerance of peas to MCPA. Weeds 11: 142–148.

    Google Scholar 

  • Went FW. (1944) Plant growth under controlled conditions. II. Thermoperiodicity in growth and fruiting of the tomato. Amer J Bot 31: 135–150.

    Google Scholar 

  • Went FW. (1957) The Experimental Control of Plant Growth. New York: Ronald Press, 343 pp.

    Google Scholar 

  • Went FW. (1960) Photo-and thermoperiodic effects in plant growth. In: Biological Clocks. Cold Spring Harbor Symposia on Quantitative Biology, Vol. 25. New York: Cold Spring Harbor, pp. 221–230.

    Google Scholar 

  • Went FW. (1962) Ecological implications of the autonomous 24-hour rhythm in plants. Ann NY Acad Sci 98: 886–875.

    Google Scholar 

  • Went FW. (1974) Reflections and speculations. Ann Rev Plant Physiol 25: 1–26.

    CAS  Google Scholar 

  • Witherington BE, Bjorndal KA, McCabe CM. (1990) Temporal pattern of nocturnal emergence of loggerhead turtle hatchlings from natural nests. Copeia 4: 1165–1168.

    Google Scholar 

  • Witherington BE. (1991) Orientation of hatchling loggerhead turtles at sea off artificially lighted and dark beaches. J Exp Mar Biol Ecol 149(1): 1–11.

    Google Scholar 

  • Wititsuwannakul R. (1986) Diurnal variation of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity in latex of Hevea brasiliensis and its relation to rubber content. Experientia 42: 44–45.

    CAS  Google Scholar 

  • Wood WML. (1953) Thermonasty in tulip and crocus flowers. J Exp Bot 4: 65–77.

    CAS  Google Scholar 

  • Yoo KC, Uemoto S. (1976) Studies on the physiology of bolting and flowering in Raphanus sativus L.: II Annual rhythm in readiness to flower in Japanese radish, cultivar ‘Wase-shijunichi.’ Plant Cell Physiol 17: 863–865.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

(2006). Natural Resources and Agriculture. In: Introducing Biological Rhythms. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4701-5_8

Download citation

Publish with us

Policies and ethics