Advertisement

The Study of Biological Rhythms

Abstract

How could you tell if a person is alive or dead? Chances are that your answer will depend upon the presence or absence of a rhythm, the beating of the heart. Biological rhythms are inherent to life itself and can be detected by all the senses. We can see them, hear them, feel them, smell them, and we may even taste evidence of them (Figure 1.1). Perhaps the sense of time itself could be considered a sixth sense. In many ways we can sense how long a time has elapsed since some occurrence was last noted, as well as the time of day, time of month, and time of year from cues all around us (Hering, 1940; Binkley, 1990). Life moves in synchrony to the beat of clocks and calendars, some outside the body and some within the very cells of all living things. Rhythms are among the common strands from which the web of life itself is spun.

Keywords

Circadian Rhythm Allergy Clin Immunol Biological Rhythm Euglena Gracilis Peptic Ulcer Perforation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aschoff J, Giedke H, Pöppel E, Wever R. (1972) The influence of sleep-interruption and of sleep-deprivation on circadian rhythms in human performance. In: Aspects of Human efficiency. Diurnal Rhythm and Loss of Sleep. Colquhoun WP, ed. London: English University Press, pp. 133–150.Google Scholar
  2. Aserinsky E, Kleitman N. (1953) Regularly occurring periods of eye motility, and concomitant phenomena, during sleep. Science 118(3062): 273–274.PubMedCrossRefGoogle Scholar
  3. Balzer I, Neuhaus-Steinmetz U, Quentin E, van Wüllen M, Hardeland R. (1989) Concomitance of circadian and circa-4-hour ultradian rhythms in Euglena gracilis. J Interdiscipl Cycle Res 20: 15–24.Google Scholar
  4. Binkley S. (1990) The Clockwork Sparrow. Englewood Cliffs, NJ: Prentice-Hall, 262 pp.Google Scholar
  5. Bitman J, Lefcourt A, Wood DL, Stroud B. (1984) Circadian and ultradian temperature rhythms of lactating dairy cows. J Dairy Sci 67(5): 1014–1023.PubMedCrossRefGoogle Scholar
  6. Bruguerolle B, Prat M, Douylliez C, Dorfman P. (1988) Are there circadian and circannual variations in acute toxicity of phenobarbital in mice? Fundam Clin Pharmacol 2(4): 301–304.PubMedCrossRefGoogle Scholar
  7. Bünning E, Müssle L. (1951) Der Verlauf der endogen Jahresrhythmik in Samen unter dem Einfluss verschiedenartiger Aussenfaktoren. Z Naturforsch 6b: 108–112.Google Scholar
  8. Chance B, Estabrook RW, Ghosh A. (1964) Damped sinusoidal oscillations of cytoplasmic reduced pyridine nucleotide in yeast cells. Proc Natl Acad Sci (USA) 51: 1244–1251.CrossRefGoogle Scholar
  9. Chiba Y, Cutkomp LK, Halberg F. (1973) Circaseptan (7-day) oviposition rhythm and growth of Spring Tail, Folsomia Candida (Collembola: Isotomidae). J Interdiscipl Cycle Res 4: 59–66.Google Scholar
  10. DeCoursey PJ. (1960) Phase control of activity in a rodent. In: Biological Clocks. Cold Spring Harbor Symposia on Quantitative Biology, Vol 25. New York: Long Island Biol Assoc, pp. 49–55.Google Scholar
  11. DeVecchi A, Halberg F, Sothern RB, Cantaluppi A, Ponticelli C. (1981) Circaseptan rhythmic aspects of rejection in treated patients with kidney transplant. In: Chronopharmacology and Chronotherapeutics. Walker CA, Winget CM, Soliman KFA, eds. Tallahassee: Florida A&M University Foundation, pp. 339–353.Google Scholar
  12. Drake DJ, Evans JW. (1978) Cortisol secretion pattern during prolonged ACTH infusion in dexamethasone treated mares. J Interdiscipl Cycle Res 9: 89–96.Google Scholar
  13. Eesa N, Cutkomp LK, Cornélissen G, Halberg F. (1987) Circadian change in Dichloros lethality (LD50) in the cockroach in LD 14:10 and continuous red light. In: Advances in Chronobiology, Part A. Pauly JE, Scheving LE, eds. New York: Alan R. Liss, pp. 265–279.Google Scholar
  14. Ehret CF. (1980) On circadian cybernetics, and the innate and genetic nature of circadian rhythms. In: Chronobiology: Principles and Applications to Shifts in Schedules. Scheving LE, Halberg F, eds. Alphen aan den Rijn: Sijthoff & Noordhoff, pp. 109–125.Google Scholar
  15. Gervais P, Reinberg A, Gervais C, Smolensky MH, De France O. (1977) Twenty-four-hour rhythm in the bronchial hyperreactivity to house dust in asthmatics. J Allergy Clin Immunol 59(3): 207–213.PubMedCrossRefGoogle Scholar
  16. Goss RJ. (1969) Photoperiodic control of antler cycles in deer: I. Phase shift and frequency changes. J Exp Zool 170: 311–324.CrossRefGoogle Scholar
  17. Guillaume FM, Koukkari WL. (1987) Two types of high frequency oscillations in Glycine max (L.) Merr. In: Advances in Chronobiology, Part A. Pauly JE, Scheving LE, eds. NewYork: Alan R. Liss, pp. 47–58.Google Scholar
  18. Gullion GW. (1982) Forest wildlife interactions. In: Introduction to Forest Science. Young RA, ed. New York: Wiley, pp. 379–407.Google Scholar
  19. Gullion GW. (1985) Ruffed grouse research at the University of Minnesota Cloquet Forestry Center. Minn Dept Nat Res Wildl Res Unit 1985 Report, pp. 40–49.Google Scholar
  20. Gwinner E. (1977) Circannual rhythms in bird migration. Annu Rev Ecol Syst 8: 381–405.CrossRefGoogle Scholar
  21. Gwinner E. (2003) Circannual rhythms in birds. Curr Opin Neurobiol 13(6): 770–778.PubMedCrossRefGoogle Scholar
  22. Halberg Fcn, Halberg F, Sothern RB, Pearse JS, Pearse VB, Shankaraiah K, Giese AC. (1987) Consistent synchronization and circaseptennian (about 7-yearly) modulation of circannual gonadal index rhythm of two marine invertebrates. In: Advances in Chronobiology—Part A. Pauly JE, Scheving LE, eds. New York: Alan R. Liss, pp. 225–238.Google Scholar
  23. Haus E, Halberg F, Scheving LE, Pauly JE, Cardoso S, Kühl JFW, Sothern RB, Shiotsuka RN, Hwang DS. (1972) Increased tolerance of leukemic mice to arabinosyl cytosine with schedule adjusted to circadian system. Science 177(43): 80–82.PubMedCrossRefGoogle Scholar
  24. Henson CA, Duke SH, Koukkari WL. (1986) Rhythmic oscillations in starch concentration and activities of amylolytic enzymes and invertase in Medicago sativa nodules. Plant Cell Physiol 27: 233–242.Google Scholar
  25. Hering DW. (1940) The time concept and time sense among cultured and uncultured peoples. In: Time and Its Mysteries, Series II. New York: New York University Press, pp. 3–39.Google Scholar
  26. Holaday JW, Martinez HM, Natelson BH. (1977) Synchronized ultradian cortisol rhythms in monkeys: persistence during corticotropin infusion. Science 198(4312): 56–58.PubMedCrossRefGoogle Scholar
  27. Hoppensteadt FC, Keller JB. (1976) Synchronization of periodical cicada emergences. Science 194(4262): 335–337.PubMedCrossRefGoogle Scholar
  28. Janzen DH. (1976) Why bamboos wait so long to flower. Annu Rev Ecol Syst 7: 347–391.CrossRefGoogle Scholar
  29. Johnsson A. (1973) Oscillatory transpiration and water uptake of Avena plants: I. Preliminary observations. Physiol Plant 28: 40–50.CrossRefGoogle Scholar
  30. Jores A. (1938) First Conf. Ronneby, Sweden, August 13–14, 1937. Dtsch Med Wochenschr 64(21/28): 737–989.CrossRefGoogle Scholar
  31. Jores A. (1975) The origins of chronobiology: an historical outline. Chronobiologia 2(2): 155–159.PubMedGoogle Scholar
  32. Kalmus H. (1974) The foundation meeting of the international society for biological rhythms. Chronobiologia 1: 118–124.PubMedGoogle Scholar
  33. Kettlewell PS, Sothern RB, Koukkari WL. (1999) U.K. wheat quality and economic value are dependent on the North Atlantic Oscillation. J Cereal Science 29: 205–209.CrossRefGoogle Scholar
  34. Kleitman N. (1963) Sleep and Wakefulness, 2nd edn, Chicago, IL: University of Chicago Press.Google Scholar
  35. Koukkari WL. (1974) Rhythmic movements of Albizzia julibrissin pinnules. In: Chronobiology. Scheving LE, Halberg F, Pauly JE, eds. Tokyo: Igaku Shoin, pp. 676–678.Google Scholar
  36. Koukkari WL, Johnson MA. (1979) Oscillations of leaves of Abutilon theophrasti (velvetleaf) and their sensitivity to bentazon in relation to low and high humidity. Physiol Plant 47: 158–162.CrossRefGoogle Scholar
  37. Koukkari WL, Duke SH, Bonzon MV. (1985) Circadian rhythms and their relationships to ultradian and high frequency oscillations. In: Les Mecanismes de l’Irritabilité et du Fonctionnment des Rythmes chez les Végétaux, 1977–1983. Grippin H, Wagner E, eds. Genève: Université de Genève, pp. 106–126.Google Scholar
  38. Kripke DF. (1972) An ultradian biological rhythm associated with perceptual deprivation and REM sleep. Psychosom Med 34(3): 221–234.PubMedGoogle Scholar
  39. Kyriacou CP, Hall JC. (1980) Circadian rhythm mutations in Drosophila melanogaster affect short-term fluctuations in the male’s courtship song. Proc Natl Acad Sci USA 77(11): 6729–6733.PubMedCrossRefGoogle Scholar
  40. Labrecque G. (1992) Inflammatory reaction and disease states. In: Biological Rhythms in Clinical and Laboratory Medicine. Touitou Y, Haus E, eds. Berlin: Springer-Verlag, pp. 483–492.Google Scholar
  41. Lavie P. (1979) Ultradian rhythms in alertness—a pupillometric study. Biol Psychol 9(1): 49–62.PubMedCrossRefGoogle Scholar
  42. Lloyd D, Edwards SW, Fry JC. (1982) Temperature-compensated oscillations in respiration and cellular protein content in synchronous cultures of Acanthamoeba castellanii. Proc Natl Acad Sci (USA) 79(12): 3785–3788.CrossRefGoogle Scholar
  43. Lovett-Douse JW, Payne WD, Podnieks I. (1978) An ultradian rhythm of reaction time measurements in man. Neuropsychobiology 4(2): 93–98.Google Scholar
  44. Luce G. (1970) Biological Rhythms in Psychiatry and Medicine. Washington, DC: Natl Inst Mental Health, US Dept. Health, Education and Welfare, 183 pp.Google Scholar
  45. Ludwig H, Hinze E, Junges W. (1982) Endogene Rhythmen des Keimverhaltens der Samen von Kartoffeln, insbesondere von Solanum acaule. Seed Sci Technol 10: 77–86.Google Scholar
  46. Marshall J. (1977) Diurnal variation in the occurrence of strokes. Stroke 8(2): 230–231.PubMedGoogle Scholar
  47. Martinson KB, Sothern RB, Koukkari WL, Durgan BR, Gunsolus JL. (2002) Circadian response of annual weeds to Glyphosate and Glufosinate. Chronobiol Intl 19(2): 405–422. [Erratum: Chronobiol Intl 2002; 19(4): 805–806]CrossRefGoogle Scholar
  48. Millet B, Melin D, Bonnet B, Ibrahim CA, Mercier J. (1984) Rhythmic circumnutation movement of the shoots in Phaseolus vulgaris L. Chronobiol Intl 1(1): 11–19.Google Scholar
  49. Moore-Ede M. (1993) The Twenty-Four Hour Society: Understanding Human Limits in a World That Never Stops. Reading, MA: Addison-Wesley, 230 pp.Google Scholar
  50. Pengelley ET, Fisher KC. (1963) The effect of temperature and photoperiod on the yearly hibernating behavior of captive golden-mantled ground squirrels (Citellus lateralis testcorum). Can J Zool 41: 1103–1120.Google Scholar
  51. Pincus DJ, Humeston TR, Martin RJ. (1997) Further studies on the chronotherapy of asthma with inhaled steroids: the effect of dosage timing on drug efficacy. J Allergy Clin Immunol 100(6 Pt 1): 771–774.PubMedCrossRefGoogle Scholar
  52. Presser HB. (1974) Temporal data relating to the human menstrual cycle. In: Biorhythms and Human Reproduction. Ferin M, Halberg F, Richert RM, Vande Wiele R, eds. New York: Wiley, pp. 145–160.Google Scholar
  53. Reinberg A, Zagula-Mally Z, Ghata J, Halberg F. (1969) Circadian reactivity rhythm of human skin to house dust, penicillin, and histamine. J Allergy 44(5): 292–306.PubMedCrossRefGoogle Scholar
  54. Reinberg A, Clench J, Aymard N, Galliot M, Bourdon R, Gervais P, Abulker C, Dupont J. (1975) [Circadian variations of the effects of ethanol and of blood ethanol values in the healthy adult man. Chronopharmacological study] [French]. J Physiol (Paris) 70(4): 435–456.Google Scholar
  55. Reinberg A, Reinberg MA. (1977) Circadian changes in the duration of local anesthetic agents. Naunyn-Schmiedebergs Arch Pharmacol 297: 149–152.PubMedCrossRefGoogle Scholar
  56. Reinberg A, Smolensky MH. (1985) Chronobiologic considerations of the Bhopal methyl isocyanate disaster. Chronobiol Intl 2(1): 61–62.Google Scholar
  57. Reinberg A, Pauchet F, Ruff F, Gervais A, Smolensky MH, Levi F, Gervais P, Chaouat D, Abella ML, Zidani R. (1987) Comparison of once-daily evening versus morning sustained-release theophylline dosing for nocturnal asthma. Chronobiol Intl 4(3): 409–419.Google Scholar
  58. Scheving LE, Vedral D, Pauly JA. (1968) Circadian susceptibility rhythm in rats to pentobarbital sodium. Anat Rec 160(4): 741–750.PubMedCrossRefGoogle Scholar
  59. Smiley AM. (1990) The Hinton train disaster. Accid Anal Prev 22(5): 443–455.PubMedCrossRefGoogle Scholar
  60. Smolensky M, Halberg F, Sargent F. (1972) Chronobiology of the life sequence. In: Advances in Climatic Physiology. Ito S, Ogata K, Yohimura H, eds. Tokyo: Igaku Shoin, pp. 281–318.Google Scholar
  61. Spruyt E, Verbelen J-P, De Greef JA. (1987) Expression of circaseptan and circannual rhythmicity in the imbibition of dry stored bean seeds. Plant Physiol 84: 707–710.PubMedGoogle Scholar
  62. Spruyt E, Verbelen J-P, De Greef JA. (1988) Ultradian and circannual rhythmicity in germination of Phaseolus seeds. J Plant Physiol 132: 234–238.Google Scholar
  63. Sundararaj BI, Vasal S, Halberg F. (1982) Circannual rhythmic ovarian recrudescence in the catfish, Heteropneustes fossilis (Bloch). In: Toward Chronopharmacology. Takahashi R, Halberg F, Walker C, eds. New York: Pergamon, pp. 319–337.Google Scholar
  64. Svanes C, Sothern RB, Sørbye H. (1998) Rhythmic patterns in incidence of peptic ulcer perforation over 5.5 decades in Norway. Chronobiol Intl 15(3): 241–264.CrossRefGoogle Scholar
  65. Willich SN, Levy D, Rocco MB, Tofler GH, Stone PH, Muller JE. (1987) Circadian variation in the incidence of sudden cardiac death in the Framingham Heart Study population. Amer J Cardiol 60: 801–806.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Personalised recommendations