From transient to steady-state response of ecosystems to atmospheric CO2-enrichment and global climate change: conceptual challenges and need for an integrated approach

  • Lindsey E. Rustad
Part of the Tasks for vegetation science book series (TAVS, volume 41)


Evidence continues to accumulate that humans are significantly increasing atmospheric CO2 concentrations, resulting in unprecedented changes in the global climate system. Experimental manipulations of terrestrial ecosystems and their components have greatly increased our understanding of short-term responses to these global perturbations and have provided valuable input to ecosystem, dynamic vegetation, and global scale models. However, concerns exist that these initial experimental responses may be transitory, thereby limiting our ability to extrapolate short-term experimental responses to infer longer-term effects. To do these extrapolations, it will be necessary to understand changes in response patterns over time, including alterations in the magnitude, direction, and rate of change of the responses. These issues represent one of our largest challenges in accurately predicting longer-term changes in ecosystems and associated feedbacks to the climate system. Key issues that need to be considered when designing future experiments or refining models include: linear vs. non-linear responses, direct vs. indirect effects, lags in response, acclimation, resource limitation, homeostasis, buffers, thresholds, ecosystem stoichiometry, turnover rates and times, and alterations in species composition. Although experimental and landscape evidence for these response patterns exist, extrapolating longer-term response patterns from short-term experiments will ultimately require a unified multidisciplinary approach, including better communication and collaboration between theoreticists, experimentalists and modelers.

Key words

Climate change CO2 enrichment Ecosystem modeling Global change Temporal scaling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aber J.D. and Driscoll C.T. 1997. Effects of land use, climate variation and N deposition on N cycling and C storage in northern hardwood forests. Global Biogeochem. Cycles 11: 639–648.Google Scholar
  2. Aber J.D., Goodale C.L., Ollinger S.V., Smith M.-L., Magill A.H., Martin M.E. and Stoddard J.L. 2003. Is nitrogen deposition altering the nitrogen status of northeastern forests? BioScience 53: 375–390.Google Scholar
  3. Adam N.R., Wall G.W., Kimball B., Pinter P. Jr., LaMorte R.L., Hunsaker D., Adamsen F.J., Thompson T.L., Matthias A.D., Leavitt S.W. and Webber A. 2001. Acclimation response of the photosynthetic apparatus in a wheat ecosystem under free-air CO2 enrichment (FACE) and variable soil nitrogen regimes: leaf position and phenology determine acclimation response. Photosynth. Res. 66: 79–95.Google Scholar
  4. Ainsworth E.A. and Long S.P. 2005. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A metareview of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol. 165: 351–372.PubMedGoogle Scholar
  5. Ainsworth E.A., Davey P.A., Hymus G.J., Osborne C.P., Rogers A., Blum H., Nosberger J. and Long S.P. 2003. Is stimulation of leaf photosynthesis by elevated carbon dioxide concentration maintained in the long term? A test with Lolium perenne grown for 10 years at two nitrogen fertilization levels under free air CO2 enrichment (FACE). Plant, Cell Environ. 26: 705.Google Scholar
  6. Arnold S.S., Fernandez I.J., Rustad L.E. and Zibilske L.M. 1999. Microbial response of an acid forest soil to experimental soil warming. Biol. Fertil. Soils 30: 239–244.Google Scholar
  7. Arp W.J., Drake B.G., Pockman W.T., Curtis P.S. and Whigham D.F. 1993. Interactions between C3 and C4 salt marsh plant species during four years of exposure to elevated atmospheric CO2. Vegetatio 104(105): 133–143.Google Scholar
  8. Atkin O.K. and Lambers H. 1998. Slow-growing alpine and fast-growing lowland species: a case study of factors associated with variation in growth rate among herbaceous higher plants under natural and controlled conditions. In: Lambers H., Poorter H. and VanVuuren M.M.I. (eds), Inherent Variation in Plant Growth: Physiological Mechanisms and Ecological Consequences, Backhuys Publishers, Leiden, pp. 259–288.Google Scholar
  9. Atkin O.K., Holly C. and Ball M.C. 2000a. Acclimation of snow gum (Eucalyptus pauciflora) leaf respiration to seasonal and diurnal variations in temperature: the importance of changes in the capacity and temperature sensitivity of respiration. Plant Cell Environ. 23: 15–26.Google Scholar
  10. Atkin O.K., Edwards E.J. and Loveye B.R. 2000b. Response of root respiration to changes in temperature and its relevanc to global warming. New Phytol. 147: 141–154.Google Scholar
  11. Badeck F.W., Bondeau K., Bottcher D., Doktor D., Lucht W., Schaber J. and Sitch S. 2004. Responses of spring phenology to climate change. New Phytol. 162: 295–310.Google Scholar
  12. Barry J. and Bjorkman O. 1980. Photosynthetic temperature response and adaptation to temperature in higher plants. Annu. Rev. Plant Physiol. 31: 491–543.Google Scholar
  13. Bazzaz F.A. 1990. The response of natural ecosystems to the rising global CO2 levels. Annu. Rev. Ecol. Systemat. 21: 167–196.Google Scholar
  14. Belote R.T., Weltzin J.F. and Norby R.J. 2003. Response of an understory plant community to elevated [CO2] depends on differential responses of dominant invasive species and is mediated by soil water availability. New Phytol. 161: 827–835.Google Scholar
  15. Berbet M.L.C. and Costa M.H. 2002. Climate change after tropical deforestation: seasonal variability of surface albedo and its effects on precipitation change. J. Climate 16: 2099–2104.Google Scholar
  16. Betts R.A. 2000. Offset of the potential carbon sink from boreal forestation by decreases in surface albedo. Nature 408: 187–190.PubMedGoogle Scholar
  17. Betts R.A., Cox P., Lee S.E. and Woodward F.I. 1997. Contrasting physiological and structural vegetation feedbacks in climate change simulations. Nature 387: 796–799.Google Scholar
  18. Bolstad P.V., Reich P. and Lee T. 2003. Rapid temperature acclimation of leaf respiration rates in Quercus alba and Quercus rubra. Tree Physiol. 23: 969–976.Google Scholar
  19. Bowes G. 1993. Facing the inevitable: plants and increasing atmospheric CO2. Annu. Rev. Plant Physiol. Plant Mol. Biol. 44: 309–332.Google Scholar
  20. Brown J.H., Valone T.J. and Curtin C.G. 1997. Reorganization of an arid ecosystem in response to recent climate change. Proceed. Natl. Acad. Sci. 94: 9729–733.Google Scholar
  21. Campbell R.K. and Sorensen F.C. 1973. Cold-acclimation in seedling Douglas-Fir related to phenology and provenance. Ecology 54: 1148–1151.Google Scholar
  22. Chapin F.S. III and Starfield A.M. 1997. Time lags and novel ecosystems in response to transient climate change in arctic Alaska. Climatic Change 35: 449–461.Google Scholar
  23. Chapin F.S. III, Zavaleta E.S., Eviners V.T., Naylor R.L., Vitousek P.M., Reynolds H., Hooper D.U., Lavorel S., Sala O.E., Hobbie S.E., Mack M. and Diaz S. 2000. Consequences of changing biodiversity. Nature 405: 234–242.PubMedGoogle Scholar
  24. Classen A.T. and Langley J.A. 2005. Data-model integration is not magic: Modeling ecosystem responses to global change: techniques and recent advances. New Phytol. 166: 367–370.PubMedGoogle Scholar
  25. Collins H.P., Paul E.A., Paustian K. and Elliott E.T. 1997. Characterization of soil organic matter relative to its stability and turnover. In: Paul E.A., Paustian Elliott E.T. and Cole C.V. (eds), Soil Organic Matter in Temperate Agroecosystems: Long-term Experiments in North America, CRC Press, Boca Raton, FL, pp. 51–72.Google Scholar
  26. Curtis P.S. and Wang X. 1998. A Meta-analysis of elevated CO2 on woody plant mass, form, and physiology. Oecologia 113: 299–313.Google Scholar
  27. Davidson E.A., Belk E. and Boone R. 1998. Soil water content and temperature as independent or cofounded factors controlling soil respiration in a temperate mixed hardwood forest. Global Change Biol. 4: 217–227.Google Scholar
  28. Derner J.D., Johnson H.B., Kimball B.A, Pinter P.J. Jr., Polley H.W., Tischler C.T., Boutton T.W., Lamorte R.L., Wall G.W., Adam N.R., Leavitt S.W., Ottman M.J., Matthias A.D. and Brooks T.J. 2003. Above-and below-ground responses of C3-C4 species mixtures to elevated CO2 and soil water availability. Global Change Biol. 9(3): 452–460.Google Scholar
  29. deValpine P. and Harte J. 2001. Plant responses to experimental warming in a montane meadow. Ecology 82: 637–648.Google Scholar
  30. Drake B.G., Gonzalez-Meler M.A. and Long S.P. 1997. More efficient plants: a consequence of rising atmospheric CO2? Annu. Rev. Plant Physiol. Plant Mol. 48: 609–639.Google Scholar
  31. Egli P., Maurer S., Gunthardt-Goerg M.S. and Korner C. 1998. Effects of elevated CO2 and soil quality on leaf gas exchange and aboveground growth in beech-spruce model ecosystems. New Phytol. 140: 185–196.Google Scholar
  32. Ehleringer J.R. and Monson R.K. 1993. Evolutionary and ecological aspects of photosynthetic pathway variation. Annu. Rev. Ecol. Systemat. 24: 411–439.Google Scholar
  33. Equiza M., Mirave J. and Tognett J. 2001. Morphological, anatomical, and physiological responses related to differential shoot vs root growth inhibition at low temperature in spring and winter wheat. Ann. Bot. 87: 67–76.Google Scholar
  34. Farage P.K., McKee I.F. and Long S.P. 1998. Does a low nitrogen supply necessarily lead to acclimation of photosynthesis to elevated CO2? Plant Physiol. 118: 573–580.PubMedGoogle Scholar
  35. Ferrar P.J., Slatyer R.O. and Vranjic J.A. 1989. Photosynthetic temperature acclimation in Eucalyptus species from diverse habitat, and comparison with Nerium oleander. Aust. J. Plant Physiol. 16: 199–217.Google Scholar
  36. Fitzhugh R.D., Likens G.E., Driscoll C.T., Mitchell M.J., Groffman P.M., Fahey T.J. and Hardy J.P. 2003. The role of soil freezing events in interannual patterns of stream chemistry at the Hubbard Brook Experimental Forest. Environ. Sci. Technol. 37: 1575–1580.PubMedGoogle Scholar
  37. Gesch R.W., Vu J.C.V., Boote K.J., Allen L.H. Jr. and Bowes G. 2002. Sucrose-phosphate synthase activity in mature rice leaves following changes in growth CO2 is unrelated to sucrose pool size. New Phytol. 154: 77–84.Google Scholar
  38. Giardina C.P. and Ryan M.G. 2000. Evidence that decomposition rates of organic carbon in mineral soil do not very with temperature. Nature 404: 858–861.PubMedGoogle Scholar
  39. Gregory J.M., Huybrechts P. and Raper S.C.B. 2004. Climatology: threatened loss of the Greenland ice-sheet. Nature 428: 616.PubMedGoogle Scholar
  40. Griffin K.L., Turnball M. and Murphy R., 2002. Leaf respiration is differentially affected by leaf vs stand night-time warming. Global Change Biol. 8: 479–485.Google Scholar
  41. Grünzweig J.M. and Körner C. 2001. Growth, water and nitrogen relations in grassland model ecosystems of the semiarid Negev of Israel exposed to elevated CO2. Oecologia 128: 251–262.Google Scholar
  42. Gu L., Post W.M., King A.W. 2004. Fast labile carbon turnover obscures sensitivity of heterotrophic respiration from soil to temperature: a model analysis. Global Biogeochem. Cycles 18, GB1022, doi:10.1029/2003GB002119.Google Scholar
  43. Gunderson C.A. and Wullschleger S.D. 1994. Photosynthetic acclimation in trees to rising atmospheric CO2: a broader perspective. Photosynth. Res. 39: 369–388.Google Scholar
  44. Gunderson C.A., Norby R.J. and Wullschleger S.D. 2000. Acclimation of photosynthesis and respiration to simulated climatic warming in northern and southern populations of Acer saccharum: laboratory and field evidence. Tree Physiol. 20: 87–96.PubMedGoogle Scholar
  45. Hebeisen T., Löscher Zanetti S., Fischer B.U., Hartwig U.A., Frehner M., Hendrey G.R., Blum G. and Nrger J. 1997. Growth response of Trifolium repens L. and Lolium perenne L. as monocultures and bi-species mixture to free air CO2 enrichment and management. Global Change Biol. 3: 149–160.Google Scholar
  46. Horacio H. 2003. Root/shoot allocation and root architecture in seedlings: variation among forest sites, microhabitats, and ecological. Biotropica 35: 318–332.Google Scholar
  47. Hungate B.A., Dukes J.S., Shaw M.R., Luo Y. and Field C.B. 2003. Nitrogen and climate change. Science 302: 1512–1513.PubMedGoogle Scholar
  48. Hymus G.J., Pontailler J.Y., Li J., Stiling P., Hinkle C.R., Drake B.G. 2002a. Seasonal variability in the effect of elevated CO2 on ecosystem leaf area index in a scrub-oak ecosystem. Global Change Biol. 8: 931–940.Google Scholar
  49. Hymus G.J., Snead T.G., Johnson D.P., Hungate B.A. and Drake B.G. 2002. Acclimation of photosynthesis and respiration to elevated atmospheric CO2 in two scrub oaks. Global Change Biol. 8: 318.Google Scholar
  50. Ineson P, Taylor K., Harrison A.F., Poskitt J., Benham D.G., Tipping E. and Woof C. 1998. Effects of climate change on nitrogen dynamics in upland soils I A transplant approach. Global Change Biol. 4: 143–152.Google Scholar
  51. Ingram W.J., Wilson C.A. and Mitchell J.F.B. 1989. Modeling climate change: an assessment of sea ice and surface albedo feedbacks. J. Geophys. Res. 94: 8609–8622.Google Scholar
  52. Intergovernmental Panel on Climate Change 2001. In: Houghton J.T., Ding Y., Griggs D.J., Noguer M., van der Linden P.J. and Xiaosu D. (eds.), Climate Change 2001: The Scientific Basis. University Press, Cambridge, United Kingdom.Google Scholar
  53. Ives R.A. and Cardinale B.J. 2004. Food-web interactions govern the resistance of communities after non-random extinctions. Nature 429: 174–177.PubMedGoogle Scholar
  54. Jefts S., Fernandez I.J., Rustad L.E. and Dail D.B. 2004. Decadal responses in soil N dynamics at the Bear Brook Watershed in Maine, USA. Forest Ecol. Manage. 189: 189–205.Google Scholar
  55. Karnosky D.F., Zak D.R., Pregitzer K.S., Awmack C.S., Bockheim J.G., Dickson R.E., Hendrey G.R., Host G.E., King J.S., Kopper B.J., Kruger E.L., Kubiske M.E., Lindroth R.L., Mattson W.J., McDonald E.P., Noormets A., Oksanen E., Parsons W.F.J., Percy K.E., Podila G.K., Riemenschneider D.E., Sharma P., Thakur R.C., Sober A., Sober J., Jones W.S., Anttonen S., Vapaavuori E., Mankovska B., Heilman W.E. and Isebrands J.G. 2003. Tropospheric O3 moderates responses of temperate hardwood forests to elevated CO2: A synthesis of molecular to ecosystem results from the Aspen FACE project. Funct. Ecol. 17: 289–304.Google Scholar
  56. Keeling C.D., Whorf T.P. 2004. Atmospheric CO2 records from sites in the SIO air sampling network. In: Trends: A Compendium of Data on Global Change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, Tennessee, USA.Google Scholar
  57. Kirscbaum M.U.F. and Farquhar G.D. 1984. Temperature dependence of whole-leaf photosynthesis in Eucalyptus pauciflora Sieb ex Spreng. Plant Physiol. 11: 519–538.Google Scholar
  58. Klickoff L.G. 1966. Temperature dependence of the oxidative rates of mitochondria in Danthonia intermedia, Penstemmon davidsonii and Sitanion hystrix. Nature 212: 529–530.Google Scholar
  59. Körner Ch. 2000. Biosphere responses to CO2 enrichment. Ecol. Appl. 10: 1590–1619.Google Scholar
  60. Kozlowski T.T. and Pallardy S.G. 2002. Acclimation and adaptive responses of woody plants to environmental stresses. Bot. Rev. 68: 270–334.Google Scholar
  61. Kristensen H.L., McCarty G.W. and Meisinger J.J. 2000. Effects of soil structure disturbance on mineralization of organic soil nitrogen soil. Sci. Soc. Am. J. 64: 371–378.Google Scholar
  62. Kubiske M.E., Zak D.R., Pregitzer K.S. and Takeuchi Y. 2002. Photosynthetic acclimation of overstory Populus tremuloides and understory Acer saccharum to elevated atmospheric CO2 concentration: interactions with shade and soil nitrogen. Tree Physiol. 22: 321–329.PubMedGoogle Scholar
  63. Lambers H., Atkin O.K. and Scheurwater I. 1996. Respiratory patterns in roots in relation to their functioning. In: Waisel Y., Eschel A. and Kafkaki U. (eds), Plant Roots: The Hidden Half, Marcel Dekker, New York, pp. 323–362.Google Scholar
  64. Lamontagne S. 1998. Nitrogen mineralization in upland Precambrian Shield catchments: contrasting the role of lichencovered bedrock and forested areas. Biogeochemistry 441: 53–69.Google Scholar
  65. Likens G.E., Bormann F.H. and Johnson N.M. 1972. Acid rain. Environment 14: 33–40.Google Scholar
  66. Liski J., Ilvesniemi H., Makela A. and Westman C.J. 1999. CO2 emissions from soil in response to climatic warming are overestimated-the decomposition of old soil organic matter is tolerant to temperature. Ambio 28: 171–174.Google Scholar
  67. Lukewille A. and Wright R. 1997. Experimentally increased soil temperature causes release of nitrogen at a boreal forest catchment in southern Norway. Global Change Biol. 3: 13–21.Google Scholar
  68. Luo Y., Field C.B. and Mooney H.A. 1994. Predicting responses of photosynthesis and root fraction to elevated CO2: interaction among carbon, nitrogen and growth. Plant, Cell Environ. 17: 1195–1204.Google Scholar
  69. Luo Y., Wan S., Hui D. and Wallace L.L. 2001. Acclimation of soil respiration to warming in a tall grass prairie. Nature 413: 622–625.PubMedGoogle Scholar
  70. Lüscher A., Hebeisen T., Zanetti S., Hartwig U.A., Blum H., Hendrey G.R., Nösberger J. 1996. Differences between legumes and non-legumes of permanent grassland in their responses to free air carbon dioxide enrichment. In: Körner C. and Bazzaz (eds), Carbon Dioxide, Populations and Communities, Academic Press, San Diego, pp. 287–29Google Scholar
  71. Lüscher A., Hendry G.R. and Nösberger J. 1998. Long-term responsiveness to free air CO2 enrichment of functional types, species and genotypes of plants from fertile permanent grassland. Oecologia 113: 37–45Google Scholar
  72. Lynch A.H. and Wu W. 1999. Impacts of fire and warming on ecosystem uptake in the boreal forest. J. Climate 13: 2334–2338.Google Scholar
  73. Maroco J.P., Edwards G.E. and Ku M.S.B. 1999. Photosynthetic acclimation of maize to growth under elevated levels of carbon dioxide. Planta 210: 115–125.PubMedGoogle Scholar
  74. Matsuki S., Ogawa K., Tanaka A. and Hara T. 2003. Morphological and photosynthetic responses of Quercus crispula seedlings to highlight conditions. Tree Physiol. 23: 769–775.PubMedGoogle Scholar
  75. McNulty S.G., Aber J.D., McLellan T.M. and Katt S.K. 1990. Nitrogen cycling in high elevation forests of the northeastern US in relation to nitrogen deposition. Ambio 19: 38–40.Google Scholar
  76. McNulty S.G., Aber J.D. and Boone R.D. 1991. Spatial changes in forest floor and foliar chemistry in spruce-fir forests across New England. Biogeochemistry 14: 13–26.Google Scholar
  77. Medlyn B.E., Badeck F.W., De Pury D.G.G., Barton C.V.M., Broadmeadow M., Ceulemans R., De Angelis P., Forstreuter M., Jach M.E., Kellomäki S., Laitat E., Marek M., Philippot S., Rey A., Strassemeyer J., Laitinen K., Liozon R., Portier B., Roberntz P., Wang K. and Jstbid P.G. 1999. Effects of elevated [CO2] on photosynthesis in European forest species: a meta-analysis of model parameters. Plant, Cell Environ. 22: 1475–1495.Google Scholar
  78. Medlyn B.E., Barton C.V.M., Broadmeadow M.S.J., Ceulemans R., De Angelis P., Forstreuter M., Freeman M., Jackson S.B., Kellomäki S., Laitat E., Rey A., Roberntz P., Sigurdsson B.D., Strassemeyer J., Wang K., Curtis P.S. and Jarvis P.G. 2001a. Stomatal conductance of forest species after long-term exposure to elevated CO2 concentration: a synthesis. New Phytol. 149: 247–264.Google Scholar
  79. Medlyn B.E., Barton C.V.M., Broadmeadow M.S.J., Ceulemans R., De Angelis P., Forstreuter M., Freeman M., Jackson S.B., Kellomäki S., Laitat E., Rey A., Roberntz P., Sigurdsson B.D., Strassemeyer J., Wang K., Curtis P.S. and Jarvis P.G. 2001b. Stomatal conductance of forest species after long-term exposure to elevated CO2 concentration: a synthesis. New Phytol. 149: 247–264.Google Scholar
  80. Melillo J.M., Steudler P.A., Aber J.D., Newkirk K., Lux H., Bowles F.P., Catricala C., Magill A., Ahrens T. and Morrisseau S. 2002. Soil warming and carbon-cycle feedbacks to the climate system. Science 298: 2173–2176.PubMedGoogle Scholar
  81. Miroslavov E.A. and Kravkina I.M. 1991. Comparative analysis of chloroplasts and mitochondria in leaf chlorenchyma from mountain plants grown at different altitudes. Ann. Bot. 68: 195–200.Google Scholar
  82. Morgan J.A., Mosier A.R., Milchunas D.G., LeCain D.R., Nelson J.A. and Parton W.J. 2004a. CO2 enhances productivity, alters species composition, and reduces forage digestibility of shortgrass steppe vegetation. Ecol. Appl. 14: 208–219.Google Scholar
  83. Morgan J.A., Pataki D.E., Körner C., Clark H., Del Grosso S.J., Grünzweig J.M., Knapp A.K., Mosier A.R., Newton P.C.D., Niklaus P.A., Nippert J.B., Nowak R.S., Parton W.J., Polley H.W. and Shaw M.R. 2004b. Water relations in grassland and desert ecosystems exposed to elevated atmospheric CO2. Oecologia 140: 11–25PubMedGoogle Scholar
  84. Morse S.R. and Bazzaz F.A. 1994. Individuals vs stands: differential responses to elevated CO2 and temperature. Ecology 75: 966–975.Google Scholar
  85. Nadelhoffer K.J., Emmet B.A., Gundersen P., Kjonaaas O.J., Koopsman C.J., Schleppi P., Tietma A. and Wright R.F. 1999. Nitrogen deposition makes a minor contribution to carbon sequestration in temperate forests. Nature 398: 145–148.Google Scholar
  86. Naeem S. and Li S. 1997. Biodiversity enhances ecosystem reliability. Nature 390: 507–509.Google Scholar
  87. National Academy Committee on Abrupt Climate Change 2001. In: Abrupt Climate Change: Inevitable Surprises, Alley R.B., Chair, National Academy Press, Washington, DC.Google Scholar
  88. New England Regional Assessment Group (NERA) 2001. Preparing for a chancing climate: the potential consequences of climate variability and change. New England Overview; U.S. Global Change Research Program, University of New Hampshire, 96 p.Google Scholar
  89. Nielsen E.T. and Orcutt D.M. 1996. Physiology of Plants Under Stress: Abiotic Factors. John Wiley and Sons, New York, p. 689.Google Scholar
  90. Niklaus P.A., Leadley P.W., Stöcklin J. and Körner Ch. 1998. Nutrient relations in calcareous grassland under elevated CO2. Oecologia 116: 67–75Google Scholar
  91. Niklaus P.A., Leadley P.W., Schmid B. and Kr Ch. 2001. A long-term field study on biodiversity X elevated CO2 interactions in grassland. Ecol. Monogr. 71: 341–356.Google Scholar
  92. Norby R.J., Cotrufo M.F., Ineson P., O’Neill E.G. and Canadell J.G. 2001. Elevated CO2, litter chemistry, and decomposition: a synthesis. Oecologia 127: 153–165.Google Scholar
  93. Norby R.J., Edwards N.T., Riggs J.S., Abner C.H. and Wullschleger S.D. 1997. Temperature-controlled open-top chambers for global change research. Global Change Biol. 3: 259–267.Google Scholar
  94. Norby R.J., Kimball B.A., Kobayashi K. (eds.) 2001b. Rising CO2-Future Ecosystems. New Phytol. Special Issue 150(2).Google Scholar
  95. Norby R.J., Long T.M., Hartz-Rubin J.S. and O’Neill E.G. 2000. Nitrogen resorption in senescing tree leaves in a warmer, CO2-enriched atmosphere. Plant Soil 224: 15–29.Google Scholar
  96. Norby R.J. and Luo L. 2004. Evaluating ecosystem responses to rising CO2 and warming in a multi-factor world. New Phytol. 162: 281–293.Google Scholar
  97. Nowak R.S., Ellsworth D.S. and Smith S.D. 2004. Functional responses of plants to elevated atmospheric CO2-do photosynthetic and productivity data from FACE experiments support early predictions? New Phytol. 162: 253–280.Google Scholar
  98. Park J., Mitchell M.J., McHale P.J., Christopher S.F. and Myers T.P. 2003. Interactive effects of changing climate and atmospheric deposition on N and S biogeochemistry in a forested watershed of the Adirondack Mountains, New York State. Global Change Biology 9: 1602–1619.Google Scholar
  99. Paustian K., Collins H.P. and Paul E.A. 1997. Management controls on soil carbon. In: Paul E.A., Paustian K., Elliott E.T. and Cole C.V. (eds), Soil Organic Matter in Temperate Agroecosystems: Long-term Experiments in North America, CRC Press, Boca Raton, FL, pp. 15–49.Google Scholar
  100. Paustian K., Elliott E.T., Six J. and Hunt H.W. 2000. Management options for reducing CO2 emissions from agricultural soils. Biogeochemistry 48: 147–163.Google Scholar
  101. Pendall E., Bridgham S., Hanson P.J., Hungate B., Kicklighter D.W., Johnson D.W., Law B.E., Luo Y., Megonigal J.P., Olsrud M., Ryan M.G. and Wan S. 2004. Belowground process response to elevated CO2 and temperature: a discussion of observations, methods, and models. New Phytol. 162: 311–322.Google Scholar
  102. Peterjohn W.T, Melillo J.M., Steudler P.A., Newkirk K.M., Bowles S.T. and Aber J.D. 1994. Responses of trace gas fluxes and N availability to experimentally elevated soil temperatures. Ecol. Appl. 4: 617–625.Google Scholar
  103. Peterson A.G., Ball J.T., Luo Y., Field C.B., Reich P.B., Curtis P.S., Griffin K.L., Gunderson C.A., Norby R.J., Tissue D.T., Forstreuter M., Rey A.A., Vogel C.S., Cmeal participants 1999. The photosynthesis-leaf nitrogen relationship at ambient and elevated atmospheric carbon dioxide: a meta-analysis. Global Change Biol. 5: 331–346.Google Scholar
  104. Poorter H. 1993. Interspecific variation in the growth response of plants to an elevated ambient CO2 concentration. Vegetatio 104(105): 77–97.Google Scholar
  105. Poorter H. and Perez-Soba M. 2001. The growth response of plants to elevated CO2 under non-optimal environmental conditions. Oecologia 129: 1–20.Google Scholar
  106. Poorter H., Roumet C. and Campbell B.D. 1996. Interspecific variation in the growth response of plants to elevated CO2: a search for functional types. In: Kr C.H. and Bazzaz F.A. (eds), Carbon dioxide, Populations, and Communities, Academic Press, San Diego, pp. 375–412.Google Scholar
  107. Potter C.S., Randerson J.T., Field C.B., Matson P.A., Vitousek P.M., Mooney H.A. and Klooster S.A. 1993. Terrestrial ecosystem production: a process model based on global satellite and surface data. Global Biogeochem. Cycles 7(4): 811–841.Google Scholar
  108. Rahmstorf S. 2002. Ocean circulation and climate during the past 120,000 years. Nature 419: 207–214.PubMedGoogle Scholar
  109. Raich J.W. and Nadelhoffer K.J. 1989. Belowground carbon allocation in forest ecosystems: global trends. Ecology 70: 1346–1354.Google Scholar
  110. Raich J.W. and Potter C.S. 1995. Global patterns of carbon dioxide emissions form soils. Global Biogeochem. Cycles 9: 23–36.Google Scholar
  111. Raich J.W. and Schlesinger W.H. 1992. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus 44: 81–89.Google Scholar
  112. Rastetter E.B. 1996. Validating models of ecosystem response to global change. BioScience 46(3): 190–198.Google Scholar
  113. Read J. 1990. Some effects of acclimation temperature on net photosynthesis in some tropical and extra-tropical Australasian Nothofagus species. J. Ecol. 78: 100–112.Google Scholar
  114. Reich P.B., Tilman D., Craine J., Ellsworth D., Tjoelker M.G., Knops J., Wedin D., Naeem S., Bahauddin D., Goth J., Bengtson W. and Lee T.D. 2001a. Do species and functional groups differ in acquisition and use of C, N and water under varying atmospheric CO2 and N availability regimes? A field test with 16 grassland species. New Phytol. 150: 435–448.Google Scholar
  115. Reich P.B., Knops J., Tilman D., Craine J., Ellsworth D., Tjoelker M., Lee T., Naeem S., Wedin D., Bahauddin D., Hendrey G., Jose S., Wrage K., Goth J. and Bengston W. 2001b. Plant diversity enhances ecosystem responses to elevated CO2 and nitrogen deposition. Nature 410: 809–812.PubMedGoogle Scholar
  116. Rey A. and Jarvis P.G. 1998. Long-term photosynthetic acclimation to increased atmospheric CO2 concentration in young birch (Betula pendula) trees. Tree Physiol. 18: 441–450.PubMedGoogle Scholar
  117. Ricklefs R.E. 1990. Ecology 3. W.H. Freeman and Company, New York, NY.Google Scholar
  118. Rogers A. and Ellsworth D.S. 2002. Photosynthetic acclimation of Pinus taeda (Loblolly Pinte) to long-term growth in elevated pCO2 (FACE). Plant, Cell, and Environment 25: 851–858.Google Scholar
  119. Rogers A. and Humphries S.W. 2000. A mechanistic evalution of Photosynthetic acclimation at elevated CO2. Global Change Biol. 6:105.Google Scholar
  120. Running S.W. and Hunt E.R. Jr. 1993. Generalization of a forest ecosystem process model for other biomes, BIOMEBGC and an application for global-scale models. In: Ehleringer J.R. and Field C. (eds), Scaling Processes Between Leaf and Landscape Levels, Academic Press, San Diego, pp. 141–158.Google Scholar
  121. Rustad L.E. and Fernandez I.J. 1998. Experimental soil warming effects on CO2 and CH4 flux from a low elevation spruce fir forest soil in Maine, USA. Global Change Biol. 4: 597–607.Google Scholar
  122. Rustad L.E. and Norby R.J. 2002. Effects of increased temperature on terrestrial ecosystems. In: Mooney H.A. and Canadell J. (eds), Encyclopedia of Global Environmental Change, Vol. 2: Biological and Ecological Dimensions of Global Environmental Change, John Wiley & Sons Ltd, Chichester, pp. 575–581.Google Scholar
  123. Rustad L.E., Campbell J., Marion G.M., Norby R.J., Mitchell M.J., Hartley A.E., Cornelissen J.H.C. and Gurevitch J. GCTE-NEWS 2001. A meta-analysis of the response of soil respiration, net N mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 126: 543–562.Google Scholar
  124. Saleska S., Shaw M.S., Fischer M., Dunne J., Holman M., Still C., Harte J. 2002a. Plant community composition mediates both large transient decline and predicted long-term recovery of soil carbon under climate warming. Global Biogeochem. Cycles 16(4).Google Scholar
  125. Saleska S., Shaw M., Fischer M., Dunne J., Shaw M., Holman M., Still C., Harte J. 2002b. Carbon-cycle feedbacks to climate change in montane meadows: results from a warming experiment and a natural climate gradient. Global Biogeochem. Cycles 16, 2001gb001573.Google Scholar
  126. Schlesinger W.H. 1997 Carbon balance in terrestrial detritus. Annu. Rev. Ecol. Syst. 8: 51–81.Google Scholar
  127. Shaver G.R., Canadell J., Chapin F.S. III, Gurevitch J., Harte J., Henry G., Ineson P., Jonasson S., Melillo J., Pitelka L. and Rustad L. 2000. Global warming and terrestrial ecosystems: a conceptual framework for analysis. BioScience 50: 871–882.Google Scholar
  128. Shaw M.R., Zavaleta E.S., Chiarello N.R., Cleland E.E., Mooney H.A. and Field C.B. 2002. Grassland responses to global environmental changes suppressed by elevated C. Science 298: 1987–1990.PubMedGoogle Scholar
  129. Sims D.A., Cheng W., Luo Y. and Seeman J.R. 1999. Photosynthetic acclimation to elevated CO2 in a sunflower canopy. J. Exp. Bot. 50: 645–653.Google Scholar
  130. Six J., Elliott E.T. and Paustian K. 2000. Soil macroaggregate turnover and microaggregate formation: A mechanism for C sequestration under no-tillage agriculture. Soil Biol. Biochem. 32: 2099–2103.Google Scholar
  131. Smith S.D., Husman T.E., Zitzer S.F., Charlet T.N., Houseman D.C., Coleman J.S., Fenstermaker L.K., Seemann J.R. and Nowak R.S. 2000. Elevated CO2 increases productivity and invasive species in an arid ecosystem. Nature 408: 79–82.PubMedGoogle Scholar
  132. Sterner R.W. and Elser J.J. 2002. Ecological Stoichiometry: The Biology of Elements form Molecules to the iosphere. Princeton University Press, Pinceton, NJ, p. 584.Google Scholar
  133. Stitt M. 1991. Rising CO2 levels and their potential significance for carbon flow in photosynthetic cells. Plant Cell Environ. 14: 741–762.Google Scholar
  134. Stöcklin J. and Körner Ch. 1998. Interactive effects of elevated CO2, P-availability, and legume presence on calcareous grassland: results of a glasshouse experiment. Funct. Ecol. 13: 200–209Google Scholar
  135. Strain B.R., Bazzaz F.A. 1983. Terrestrial plant communities. In: Lemon E. (ed.), CO2 and Plants: the Response of Plants to Rising Levels of Atmospheric Carbon dioxide, AAAS Selected Symposium 8, Washington, DC, pp. 177–222.Google Scholar
  136. Tian H., Melillo J.M., Kicklighter D.W., McQuire A.D., Moore B. III and Vorosmarty C.J. 1999. Parameters for global ecosystem models. Nature 399: 536.Google Scholar
  137. Tissue D.T., Megonigal J.P. and Thomas R.B. 1997. Nitrogenase activity and N2 fixation are stimulated by elevated CO2 in a tropical N2-fixing tree. Oecologia 109: 28–33.Google Scholar
  138. Tjoelker M.G., Oleksyn J. and Reich P.B. 2001. Modeling respiration of vegetation: evidence for a general temperaturedependent Q10. Global Change Biol. 7: 223–230.Google Scholar
  139. Tjoelker M.G., Reich P.B. and Oleksyn J. 1999. Changes in leaf nitrogen and carbohydrates underlie temperature and CO2 acclimation of dark respiration in five boreal tree species. Plant, Cell Environ. 22: 767–778.Google Scholar
  140. Updegraff K., Bridgham S.D., Pastor J., Weishampel P. and Harth C. 2001. Response of CO2 and CH4 emissions from peatlands to warming and water table manipulation. Ecol. Appl. 11: 311–326.Google Scholar
  141. Vetaas O.R. 2002. Realized and potential climate niches: a comparison of four Rhododendron tree species. J. Biogeogr. 29: 545–554.Google Scholar
  142. Wake C. and Markham A. 2005. Indicators of climate change in the northeast 2005. Clean Aiv-Cool Planet, portsmouter, NH. Scholar
  143. Walker B., Kinzig A. and Langridge J. 1999a. Plant attribute diversity, resilience, and ecosystem function: the nature and significance of dominant and minor species. Ecosystems 2: 95–113.Google Scholar
  144. Wand J.K., Tissue D.T., Thomas R.B. and Strain B.R. 1999. Comparative responses of model C3 and C4 plants to drought in low and elevated CO2. Global Change Biol. 5: 857.Google Scholar
  145. Wolfe D.W., Lakso A.N., Otsuki Y., Poole R.M. and Shaulis N.J. 2005. Climate change and shifts in the spring phenology of three horticultural woody perennials in the Northeastern U.S. Int. J. Biometeorol. 49: 303–309.PubMedGoogle Scholar
  146. Wardle D.A., Bardgett R.D., Klironomos J.N., Setälä H., van der Putten W.H. and Wall D.H. 2004. Ecological linkages between aboveground and belowground biota. Science 304: 1629–1633PubMedGoogle Scholar
  147. Watling J.R., Press M.C. and Quick W.P. 2000. Elevated CO2 induces biochemical and ultrastructural changes in leaves of the C4 cereal sorghum. Plant Physiol. 123: 1143–1152.PubMedGoogle Scholar
  148. Webber A.N., Nie G.-Y. and Long S.P. 1994. Acclimation of photosynthetic proteins to rising atmospheric CO2. Photosynth. Res. 39: 413–425.Google Scholar
  149. Zak D.R., Holme W.E., Finzi A.C., Norby R.J. and Schlesinger W.H. 2003. Soil nitrogen cycling under elevated CO2: a synthesis of the forest face experiments. Ecol. Appl. 13: 1508–1514.Google Scholar
  150. Zak D.R., Pregitzer K.S., King J.S. and Holmes W.E. 2000. Elevated atmospheric CO2, fine roots and the resonse of soil microorganisms: a review and hypothesis. New Phytol. 147: 201–222.Google Scholar
  151. Zavaleta E.S., Shaw M.R., Chiariello N.R., Thomas B.D., Cleland E.E., Field C.B. and Mooney H.A. 2003. Grassland responses to three years of elevated temperature, CO2, precipitation, and N deposition. Ecol. Monogr. 73: 585–604.Google Scholar
  152. Ziska L.H. 1998. The influence of root zone temperature on photosynthetic acclimation to elevated carbon dioxide concentrations. Ann. Bot. 81: 717–721.Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Lindsey E. Rustad
    • 1
  1. 1.USDA Forest ServiceDurham, NHUK

Personalised recommendations