A vegetation, climate and environment reconstruction based on palynological analyses of high arctic tundra peat cores (5000–6000 years BP) from Svalbard

  • J. Rozema
  • P. Boelen
  • M. Doorenbosch
  • S. Bohncke
  • P. Blokker
  • C. Boekel
  • R. A. Broekman
  • M. Konert
Part of the Tasks for vegetation science book series (TAVS, volume 41)


As a reference for ongoing studies reconstructing past vegetation, climate and environment, pollen spectra in tundra peat profiles from Svalbard, were investigated. The base of tundra peat cores collected from Ny Ålesund, Stuphallet, Blomstrand and Isdammen has been 14C dated to 350–490 BP, 5710 BP, 4670 BP and 700–900 BP, respectively. The Stuphallet and Blomstrand (Brøggerhalvøya) peat profiles were composed of a peat developed in a nutrient enriched and wet tundra environment of steep birdcliffs. Pollen concentrations were low, Brassicaceae pollen dominated the whole profile. In contrast, the Ny Ålesund and Isdammen profiles contained high pollen concentrations and suggest a nutrient-poor, dry tundra environment. Pollen of the polar willow, Salix polaris, occurred commonly throughout all four peat profiles. In the relatively high resolution (10 years per peat core sample) analysis of the Ny Ålesund core, starting before or at the beginning of the Little Ice Age (LIA, 16th-mid 19th century), dominance of Saxifraga oppositifolia indicates a cold and dry climate, followed by a decline of Saxifraga oppositifolia and gradual increase of Salix polaris after the LIA, which indicates a moist and milder climate.

Key words

Arctic Brøggerhalvøya Cassiope tetragona Climate change Little Ice Age Nutrient-enrichment Peat Permafrost Pollen record Salix polaris Saxifraga oppositifolia Svalbard Tundra vegetation composition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aerts R., Cornelissen, J.H.C. and Dorrepaal E. 2005. Plant performance in a warmer world: general responses of plants from cold, northern biomes and the importance of winter and spring events. Plant Ecol. this volume.Google Scholar
  2. Aiken S.G., Dallwitz M.J., Consaul L.L., Mc Jannet C.L., Ginnespie L.J., Boles R.L., Argus G.W., Gillett J.M., Scott P.J., Elven R., Blanc M.C. le Zamluck A.E. and Brysting A.K. 1999. Flora of the Canadian Arctic Archipelago: Descriptions, Illustrations, Identification and Information retrieval.Google Scholar
  3. Barkman J.J. 1987. Preliminary investigations on the texture of high arctic tundra vegetation. In: Huiskes A.H.L., Blom C.W.P.M. and Rozema J. (eds), Vegetation Between Land and Sea, Dr. W. Junk Publishers, Dordrecht, pp. 120–132.Google Scholar
  4. Birks H.H. 1991. Holocene vegetational history and climatic change in west Spitsbergen — plant macrofossils from Skardtjørna, an Arctic lake. Holocene 13: 209–218.Google Scholar
  5. Birks H.J.B., Jones V.J. and Rose N.L. 2004. Recent environmental change and atmospheric contamination as recorded in lake sediments — an introduction. J. Paleolimnol. 31: 403–410.CrossRefGoogle Scholar
  6. Bliss L.C. and Wiegolaski F.E. (eds). 1973. Primary Production and Production Processes, Tundra biome. Tundra Biome Steering Committee, University of Alberta, Edmonton.Google Scholar
  7. Blokker P., Boelen P., Broekman R. and Rozema J. 2005. The potential of p-coumaric and ferulic acid as UV proxies: occurrence in pollen and spores, preservation and pyrolytic analysis. Plant Ecol. (this volume).Google Scholar
  8. Boelen P., de Boer M. K., de Bakker N., Blokker P. and Rozema. J. 2005. Field studies on the effects of solar UV-B on polar bryophytes: overview and methodology. Plant Ecol. (this volume).Google Scholar
  9. Boulton G.S., Dickson J.H., Nichols H., Nichols M. and Short S.K. 1976. Late Holocene glacier fluctuations and vegetation changes at Maktak Fjord, Baffin Island, N.W.T., Canada. Arctic Alpine Res. 8: 343–356.CrossRefGoogle Scholar
  10. Clymo R.S. 1998. Sphagnum, the peatland carbon economy, and climate change. In: Bates J.W., Ashton N.W. and Duckett J.G. (eds), Bryology for twenty-first Century, Maney Publishing and the British Bryological Society, Leeds, pp. 361–368.Google Scholar
  11. Elvebakk A. 1994. A survey of plant associations and alliances from Svalbard. J. Veg. Sci. 5: 791–802.CrossRefGoogle Scholar
  12. Elvebakk A. and Prestrud P. (eds) (1996). A Catalogue of Svalbard Plants, Fungi, Algae and Cyanobacteria. Norsk Polar Institutt Skrifter 198: 1–395.Google Scholar
  13. Elven R. and Elvebakk A. 1996. Vascular plants. In: Elvebakk and Prestrud P. (eds), A Catalogue of Svalbard Plants, Fungi, Algae and Cyanobacteria. Norsk Polar Institutt Skrifter 198: 9–95.Google Scholar
  14. Elvebakk A. 1997. Tundra diversity and ecological characteristics of Svalbard. Ecosystems of the world 3, Polar and Alpine Tundra: 347–359.Google Scholar
  15. Farman J.C., Gardiner B.G. and Shanklin J.D. 1985. Large losses of total ozone in Antarctica reveal seasonal CLOx/NOx interaction. Nature 315: 207–210.CrossRefGoogle Scholar
  16. Faegri K. and Iversen J. 1989. Textbook of Pollen Analysis. 4th ed. Faegri K., Kaland P.E. and Krzywinski K. (eds), John Wiley & Sons, New York, 328 pp.Google Scholar
  17. Hassol S. J. 2004. Impact of a Warming Arctic. Arctic Climate Impact Assessment. Cambridge Universiry Press. p. 139.Google Scholar
  18. Grimm E.C. 1992. TILIA and TILIA-graph: pollen spreadsheet and graphic programs. Volume of abstracts 8th International Palynological Congress, Aix-en-Provence 1992, p. 56.Google Scholar
  19. Grove J.M. 1988. The Little Ice Age. Methuen, London, 498 pp.Google Scholar
  20. Grove J.M. 2001. The initiation of the “Little Ice Age” in regions round the North Atlantic. Climatic Change 48: 53–82.CrossRefGoogle Scholar
  21. Hisdal V. 1985. Geography of Svalbard. Norsk Polar Institutt, Oslo, p. 75.Google Scholar
  22. Hisdal V. 1998. Svalbard Nature and History. Norsk Polar Institutt, Oslo, p. 123.Google Scholar
  23. Houghton J.T., Ding Y., Griggs D.J., Noguer M., van der Linden P.J., Dai X., Maskell K. and Johnson C.A. (eds). IPCC 2001. Climate Change 2001. The Scientific Basis. Cambridge University Press.Google Scholar
  24. Isarin R.F.B. 1997. The climate in north-western Europe during the Younger Dryas. Ph.D. Thesis, Vrije Universiteit, Amsterdam, 159 pp.Google Scholar
  25. Isarin R.F.B. and Bohncke S.J.P. 1999. Mean July temperatures during the Younger Dryas in Northwestern and Central Europe as inferred from Climate Indicator Plant Species. Quaternary Res. 51: 158–171.CrossRefGoogle Scholar
  26. Isaaksson E., Hermanson M., Hicks S., Igarashi M., Kamiyama K., Moore J., Motoyama H., Muir D., Pohjola V. and Vaikmae R. 2003. Ice cores from Svalbard-useful archives of past climate and pollution history. Physics Chemistry Earth 28: 1217–1228.CrossRefGoogle Scholar
  27. Iversen, J. 1954. The Late-glacial flora of Denmark and its relation to climate and soil. Danmarks Geologiske Undersøgelse Årbog 2: 87–119.Google Scholar
  28. Karl T.R. 1998. Annex A “Regional Trends and Variations of Temperature and Precipitation”. The Regional Impacts of Climate Change. IPCC WGII, Cambridge University Press.Google Scholar
  29. van der Knaap W.O. 1985. Human influence on natural Arctic vegetation in the seventeenth century and climatic change since A.D. 1600 in north-west Spitsbergen: a paleobotanical study. Arctic Alpine Res. 17: 371–387.CrossRefGoogle Scholar
  30. van der Knaap W.O. 1987. Long-distance transported pollen and spores on Spitsbergen and Jan Mayen. Pollen et Spores XXIX(4): 449–453.Google Scholar
  31. van der Knaap W.O. 1988a. A pollen diagram from Brøggerhalvøya, Spitsbergen: changes in vegetation and environment from ca. 4400 to ca. 800 BP. Arctic Alpine Res. 20: 106–116.CrossRefGoogle Scholar
  32. van der Knaap W.O. 1988b. Age and stability of bird-manured vegetation on Spitsbergen. Arctic Botanica Neerlandica 37: 171–179.Google Scholar
  33. van der Knaap W.O. 1989a. Relations between present-day pollen deposition and vegetation in Spitsbergen. Ph.D. Thesis. Laboratory of Paleabotany and Palynology, Utrecht. Arctic centre, Groningen, pp.15–26.Google Scholar
  34. van der Knaap W.O. 1989b. Deposition of long-distance transported pollen and spores since 7900 B.P. studied in peat deposits from Spitsbergen. Ph.D. Thesis. Laboratory of Paleabotany and Palynology, Utrecht. Arctic centre, Groningen. pp. 113–117.Google Scholar
  35. van der Knaap W.O. 1991. Palynology of peat sections from Spitsbergen covering the last few centuries. Nordic J. Botany 11: 213–223.CrossRefGoogle Scholar
  36. Mc Peters R., Hollandsworth S., Flynn L., Herman J. and Seftor C. 1996. Long-term ozone trends derived from the 16-year combined nimbus 7/ meteor 3 TOMS version 7 record. J. Geophys. Res. 23: 3699–3702.Google Scholar
  37. Moore P.D., Webb J.A. and Collinson M.E. 1991. Pollen Analysis. Blackwell Scientific, London, p. 216.Google Scholar
  38. Mauquoy D., van Geel B., Blaauw M. and van der Plicht J. 2002. Evidence from northwest European bogs shows Little Ice Age climatic changes driven by variations in solar activity. Holocene 12: 1–6.CrossRefGoogle Scholar
  39. Newman P., Gleason J., Mc Peters R. and Stolarski R. 1997. Anomalously low ozone over the arctic. Geophys. Res. Lett. 24: 2689–2692.CrossRefGoogle Scholar
  40. Ovenden L. 1988. Holocene proxy-climate data from the Canadian Arctic. Geological Survey of Canada Paper: 88–122.Google Scholar
  41. van der Plicht J. 1993. The Groningen Radiocarbon Calibration Program. Radiocarbon 35: 231–237.Google Scholar
  42. Rozema J., Noordijk A.J., Broekman R.A., van Beem A., Meijkamp B.M., de Bakker N.V., van de Staaij J.W.M., Stroetenga M., Bohncke S.J.P., Konert M., Kars S., Peat H., Smith R.I.L. and Convey P. 2001a. Polyphenolic compounds in pollen and spores of Antarctic plants as indicators of solar UV-B: a new proxy for the reconstruction of past solar UVB?. Plant Ecol. 154: 11–26.Google Scholar
  43. Rozema J., Broekman R., Blokker P., Meijkamp B.M., de Bakker N.V., van de Staaij J., van Beem A., Ariese F. and Kars S.M. 2001b. UV-B absorbance and UV-B Absorbing Compounds (para-coumaric acid) in pollen and sporopollenin: the perspective to track historic UV-B. J. Photochem. Photobiol. 6: 108–117.Google Scholar
  44. Rozema J., van Geel B., Björn L.O., Lean J. and Madronich S. 2002. Towards solving the UV puzzle. Science 296: 1621–1622.PubMedCrossRefGoogle Scholar
  45. Rozema J., Boelen P., Solheim B., Zielke M., Buskens A., Doorenbosch M., Fijn R., Herder J., Callaghan T.V., Björn L.-O., Gwynn Jones D., Broekman R., Blokker P. and van de Poll W. 2006. Stratospheric ozone depletion: high arctic tundra plant species from Svalbard are not affected by enhanced UV-B after 7 years of UV-B supplementation in the field. Plant Ecol. (this volume).Google Scholar
  46. Rozema J., Boelen P. and Blokker P. 2005. Depletion of stratospheric ozone over the antarctic and arctic: responses of plants of polar terrestrial ecosystems to enhanced UV-B, an overview. Environment. Pollution 137: 428–442.CrossRefGoogle Scholar
  47. Rønning O.I. 1965. Studies in Dryadion of Svalbard. Norsk Polarinstitutt Skrifter 134: 1–52.Google Scholar
  48. Rønning O.I. 1996. Svalbards Flora. Norsk Polar Institutt.Google Scholar
  49. Short S.K. and Andrews J.T. 1980. Palynology of six middle and late Holocene peat sections, Baffin Island. Géographie physique et Quaternaire 34: 61–75.Google Scholar
  50. Stolbovoi V. 2002. Carbon in Russian soils. Climatic Change 55: 131–156.CrossRefGoogle Scholar
  51. Summerhayes V.S. and Elton C.S. 1923. Contributions to the ecology of Spitsbergen and Bear Island. J. Ecol. 11: 214–286.CrossRefGoogle Scholar
  52. Steffensen E.L. 1982. The climate at Norwegian Arctic stations. Klima 5: 1–44.Google Scholar
  53. Svendsen J.I. and Mangerud J. 1992. Paleoclimatic inferences from glacial fluctuations on Svalbard during the last 20,000 years. Climate Dynamics 6: 213–220.CrossRefGoogle Scholar
  54. Svendsen J.I. and Mangerud J. 1997. Holocene glacial and climatic variations on Spitsbergen, Svalbard. Holocene 7: 45–57.Google Scholar
  55. Van Geel B., Buurman J. and Waterbolk H.T. 1996. Archaeological and palaeoecological indications of an abrupt climate change in The Netherlands, and evidence for climatological teleconnections around 2650 BP. J. Quaternary Sci. 11: 451–460.CrossRefGoogle Scholar
  56. Van Geel B., van der Plicht J., Kilian M.R., Klaver E.R., Kouwenberg J.H.M., Renssen H., Reynaud-Farrera I. and Waterbolk H.T. 1998. The sharp rise of Δ 14C ca. 800 cal BC: possible causes, related climatic teleconnections and the impact on human environments. Radiocarbon 40: 535–550.Google Scholar
  57. Williams M., Dunkerley D., De Deckker P., Kershaw P. and Chapell J. 1998. Quaternary Environments, 2nd ed. Arnold, London.Google Scholar
  58. Zagwijn W.H. 1994. Reconstruction of climate change during the Holocene in western and central Europe based on pollen records of indicator species. Vegetation Hist. Archeobot. 3: 65–88.Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • J. Rozema
    • 1
  • P. Boelen
    • 1
  • M. Doorenbosch
    • 1
  • S. Bohncke
    • 2
  • P. Blokker
    • 1
  • C. Boekel
    • 1
  • R. A. Broekman
    • 1
  • M. Konert
    • 1
  1. 1.Department of Systems Ecology, Institute of Ecological Science, Climate CenterVrije UniversiteitAmsterdamThe Netherlands
  2. 2.Department of Quaternary Geology and GeomorphologyVrije UniversiteitAmsterdamThe Netherlands

Personalised recommendations