Skip to main content

Model Up-scaling in Landscape Research

  • Chapter
A Changing World

Part of the book series: Landscape Series ((LAEC,volume 8))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acevedo M.F., Ablan M., Urban D.L. and Pamarti S. 2001. Estimating parameters of forest patch transition models from gap models. Environmental Modelling and Software 16, 7: 649-658.

    Article  Google Scholar 

  • Acevedo M.F., Urban D.L. and Ablan M. 1995. Transition and Gap Models of Forest Dynamics. Ecological Applications 5, 4: 1040-1055.

    Article  Google Scholar 

  • Acevedo M.F., Urban D.L. and Shugart H.H. 1996. Models of forest dynamics based on roles of tree species. Ecological Modelling 87, 1-3: 267-284.

    Article  Google Scholar 

  • Allen T.F.H. and Hoekstra T.W. 1992. The principles of ecological integration. In T. F. H. Allen and T.W. Hoekstra (eds.). Toward a unified ecology, pp. 13-53. Columbia University Press, New York a.o.

    Google Scholar 

  • Auger P. and de la Parra R.B. 2000. Methods of aggregation of variables in population dynamics. Comptes Rendus De L Academie Des Sciences Serie Iii-Sciences De La Vie-Life Sciences 323, 8: 665-674.

    Article  CAS  Google Scholar 

  • Auger P. and Lett C. 2003. Integrative biology: linking levels of organization. Comptes Rendus Biologies 326, 5: 517-522.

    Article  PubMed  Google Scholar 

  • Beerling D.J. and Woodward F.I. 1996. Palaeo-ecophysiological perspectives on plant responses to global change. Trends Ecol. Evol. 11, 1: 20-23.

    Google Scholar 

  • Bolker B. and Pacala S.W. 1997. Using moment equations to understand stochastically driven spa-tial pattern formation in ecological systems. Theoretical Population Biology 52, 3: 179-197.

    Article  PubMed  Google Scholar 

  • Bolker B.M. and Pacala S.W. 1999. Spatial moment equations for plant competition: understanding spatial strategies and the advantages of short dispersal. American Naturalist 153, 6: 575-602.

    Article  Google Scholar 

  • Bolliger J., Kienast F. and Zimmermann N.E. 2000. Risks of global warming on montane and sub-alpine forests in Switzerland - a modeling study. Regional Environmental Change 1: 99-111.

    Article  Google Scholar 

  • Brown D.G. 1994. Predicting vegetation types at treeline using topography and biophysical disturbance variables. Journal of Vegetation Science 5: 641-656.

    Article  Google Scholar 

  • Bugmann H. and Cramer W. 1998. Improving the behaviour of forest gap models along drought gradients. Forest Ecology and Management 103, 2-3: 247-263.

    Article  Google Scholar 

  • Bugmann H., Lindner M., Lasch P., Flechsig M., Ebert B. and Cramer W. 2000. Scaling issues in forest succession modelling. Climatic Change 44, 3: 265-289.

    Article  Google Scholar 

  • Cain M.L., Damman H. and Muir A. 1998. Seed dispersal and the holocene migration of wood-land herbs. Ecological Monographs 68, 3: 325-347.

    Article  Google Scholar 

  • Cain M.L., Milligan B.G. and Strand A.E. 2000. Long-distance seed dispersal in plant populations. American Journal of Botany 87, 9: 1217-1227.

    Article  PubMed  Google Scholar 

  • Chesson P. 1998. Making sense of spatial models in ecology. In: Bascompte J. and SolĂ© R. (eds.). Modelling Spatiotemporal Dynamics in Ecology, pp. 151-166. Springer-Verlag and Landes Bioscience.

    Google Scholar 

  • Clark J. 1998. Why trees migrate so fast: Confronting theory with dispersal biology and the paleorecord. American Naturalist 152, : 204-224.

    Article  PubMed  CAS  Google Scholar 

  • Clark J., Horvath L. and Lewis M. 2001a. On the estimation of spread rate for a biological popula-tion. Statistics & Probability Letters 51, 3: 225-234.

    Article  Google Scholar 

  • Clark J.S., Lewis M. and Horvath L. 2001b. Invasion by extremes: Population spread with variation in dispersal and reproduction. American Naturalist 157, 5: 537-554.

    Article  CAS  Google Scholar 

  • Clark J.S., Silman M., Kern R., Macklin E. and HilleRisLambers J. 1999. Seed dispersal near and far: Patterns across temperate and tropical forests. Ecology 80, 5: 1475-1494.

    Article  Google Scholar 

  • Dieckmann U. and Law R. 2000. Relaxation projections and the method of moments. In Dieckmann U., Lawand R., Metz J.A.J. (eds.). The geometry of ecological interactions: Simplifying spatial complexity, pp. 412-455. Cambridge University Press, Cambridge.

    Chapter  Google Scholar 

  • Dieckmann U., Law R. and Metz J.A.J. 2000. The geometry of ecological interactions: Simplifying spatial complexity, pp. 564. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Ellner S.P., Sasaki A., Haraguchi Y. and Matsuda H. 1998. Speed of invasion in lattice population models: pair-edge approximation. Journal of Mathematical Biology 36, 5: 469-484.

    Article  Google Scholar 

  • Eriksson O. 2000. Seed dispersal and colonization ability of plants - Assessment and implications for conservation. Folia Geobotanica 35, 2: 115-123.

    Article  Google Scholar 

  • Farqhuar G.D. and von Caemmerer S. 1982. Modelling of photosynthetic response to environmen-mental conditions. In: Lange O.L., Nobel P.S., Osmondand C.B., Ziegler H. (eds.). Physiological Plant Ecology. II. Water Relation and Carbon Assimilation. Encyclopedia of Plant Physiology, pp. 549-587. Springer, Berlin.

    Google Scholar 

  • Higgins S.I. and Richardson D.M. 1999. Predicting plant migration rates in a changing world: The role of long-distance dispersal. American Naturalist 153, 5: 464-475.

    Article  Google Scholar 

  • Holdridge L.R. 1947. Determination of world plant formations from simple climatic data. Science 105: 367-369.

    Article  PubMed  Google Scholar 

  • Iverson L.R. and Prasad A.M. 1998. Predicting abundance of 80 tree species following climate change in the eastern United States. Ecological Monographs 68: 465-485.

    Article  Google Scholar 

  • Iwasa Y., Andreasen V. and Levin S.A. 1987. Aggregation in model ecosystems. I. Perfect aggrega-tion. Ecological Modelling 47: 287-302.

    Article  Google Scholar 

  • Jones H.G. 1992. Plants and microclimate. A quantitative approach to environmental plant physiology. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • King A.W. 1991. Translating models across scales in the landscape. In: Turner M.G. and Gardner R.H. (eds.). Quantitative methods in landscape ecology: the analysis and interpretation of landscape heterogeneity, Vol. 82, pp. 470-517. Springer, New York.

    Google Scholar 

  • Kirilenko A.P. and Solomon A.M. 1998. Modelling dynamic vegetation responses to rapid climate change using bioclimatic classification. Climatic Change 28: 16-49.

    Google Scholar 

  • Kot M., Lewis M.A. and vandenDriessche P. 1996. Dispersal data and the spread of invading organisms. Ecology 77, 7: 2027-2042.

    Article  Google Scholar 

  • Lee C.K. 1999. Automatic adaptive mesh generation using metric advancing front approach. Engineering Computations 16, 2-3: 230-263.

    Article  Google Scholar 

  • Levin S.A. 1992. The problem of pattern and scale in ecology. Ecology 73, 6: 1943-1967.

    Article  Google Scholar 

  • Lewis M.A. 2000. Spread rate for a nonlinear stochastic invasion. Journal of Mathematical Biology 41, 5: 430-454.

    Article  PubMed  CAS  Google Scholar 

  • Lischke H., Löffler T.J. and Fischlin A. 1997a. Calculating temperature dependence over long time periods: A comparison and study of methods. Agric. For. Meteorol. 86: 169-181.

    Article  Google Scholar 

  • Lischke H., Löffler T.J. and Fischlin A. 1997b. Calculating temperature dependence over long time periods: Derivation of methods. Ecol. Model. 98, 2-3: 105-122.

    Article  Google Scholar 

  • Lischke H., Löffler T.J. and Fischlin A. 1998. Aggregation of individual trees and patches in forest succession models - Capturing variability with height structured random dispersions. Theoretical Population Biology 54, 3: 213-226.

    Article  PubMed  CAS  Google Scholar 

  • Löffler T.J. and Lischke H. 2001. Incorporation and influence of variability in an aggregated forest model. Natural Resource Modeling 14, 1: 103-137.

    Article  Google Scholar 

  • Luckyanov N.K. 1995. Model aggregation: Mathematical perspectives. In: Patten B.C. and Joergensen S.E. (eds.). Complex ecology: the part -whole relation in ecosystems, pp. 242-260. Prentice Hall, Englewood Cliffs.

    Google Scholar 

  • Melbourne B.A. and Chesson P. 2005. Scaling up population dynamics: integrating theory and data. Oecologia 145, 2: 179-187.

    Article  PubMed  Google Scholar 

  • Melillo J.M., Prentice I.C., Farquhar G.D., Schulze E.D. and Sala O.E. 1996. Terrestrial biotic responses to environmental change and feedbacks to climate. In: Houghton J.T., Meira Filho L.G., Callander B.A., Harris N., Kattenbergand A. and Maskell K. (eds.). Climate Change 1995: The Science of Climate Change, pp. 445-481. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Monserud R.A. and Marshall J.D. 1999. Allometric crown relations in three northern Idaho conifer species. Canadian Journal of Forest Research 29: 521-535.

    Article  Google Scholar 

  • Murrell D.J., Dieckmann U. and Law R. 2004. On moment closures for population dynamics in continuous space. Journal of Theoretical Biology 229, 3: 421-432.

    Article  PubMed  Google Scholar 

  • Myneni R.B., Nemani R.R. and Running S.W. 1997. Estimation of global leaf area index and absorbed par using radiative transfer models. IEEE Transactions on Geoscience and Remote Sensing 35, 6: 1380-1393.

    Article  Google Scholar 

  • Nathan R. 2005. Long-distance dispersal research: building a network of yellow brick roads. Diversity and Distributions 11, 2: 125-130.

    Article  Google Scholar 

  • Nathan R., Safriel U.N. and Noy Meir I. 2001. Field validation and sensitivity analysis of a mechanistic model for tree seed dispersal by wind. Ecology 82, 2: 374-388.

    Article  Google Scholar 

  • Nathan R., Safriel U.N., Noy Meir I. and Schiller G. 2000. Spatiotemporal variation in seed dispersal and recruitment near and far from Pinus halepensis trees. Ecology 81 (8): 2156-2169.

    Google Scholar 

  • Niinemets U., Kull O. and Tenhunen J.D. 1998. An analysis of light effects on foliar morphology, physiology, and light interception in temperate deciduous woody species of contrasting shade tolerance. Tree Physiology 18, 10: 681-696.

    PubMed  Google Scholar 

  • Nikora V.I., Pearson C.P. and Shankar U. 1999. Scaling properties in landscape patterns: New Zealand experience. Landscape Ecology 14: 17-33.

    Article  Google Scholar 

  • O’Neill R.V., DeAngelis D.L., Waide J.B. and Allen T.F.H. 1986. A hierarchical concept of eco-systems. Princeton University Press, Princeton, N.J.

    Google Scholar 

  • Pacala S.W., Canham C.D. and Silander J.A.J. 1993. Forest models defined by field measurements: I. The design of a northeastern forest simulator. Canadian Journal of Forest Research 23, 10: 1980-1988.

    Article  Google Scholar 

  • Pattee H.H. 1973. Hierarchy theory: the challenge or complex systems. G. Braziller Inc., New York, NY, U.S.A.

    Google Scholar 

  • Peterson D.L. and Parker V.T. 1998. Ecological Scale. Columbia University Press, New York, NY, U.S.A.

    Google Scholar 

  • Pierce L.L. and Running S.W. 1995. The Effects of Aggregating Subgrid Land-Surface Variation on Large-Scale Estimates of Net Primary Production. Landscape Ecology 10, 4: 239-253.

    Article  Google Scholar 

  • Pitman E.B., Nichita C.C., Patra A., Bauer A., Sheridan M. and Bursik M. 2003. Computing granu-lar avalanches and landslides. Physics of Fluids 15, 12: 3638-3646.

    Article  CAS  Google Scholar 

  • Poggiale J.C. 1998. From behavioural to population level: Growth and competition. Mathematical and Computer Modelling 27, 4: 41-49.

    Article  Google Scholar 

  • Portnoy S. and Willson M.F. 1993. Seed dispersal curves: behavior of the tail of the distribution. Evolutionary Ecology 7: 25-44.

    Article  Google Scholar 

  • Powell J.A. and Zimmermann N.E. 2004. Multi-scale analysis of seed dispersal and the resolution of Reid’s Paradox. Ecology 85, 2: 490-506.

    Article  Google Scholar 

  • Prentice I.C., Cramer W., Harrison S.P., Leemans R., Monserud R.A. and Solomon A.M. 1992. A global biome model based on plant physiology and dominance, soil properties and climate. J. Biogeogr. 19: 117-134.

    Article  Google Scholar 

  • Rastetter E.B., King A.W., Cosby B.J., Hornberger G.M., Oneill R.V. and Hobbie J.E. 1992. Aggregating Fine-Scale Ecological Knowledge to Model Coarser-Scale Attributes of Ecosystems. Ecological Applications 2, 1: 55-70.

    Article  Google Scholar 

  • Roberts J., Hopkins R. and Morecroft M. 1999.Towards a predictive description of forest canopies from litter properties. Functional Ecology 13: 265-272.

    Article  Google Scholar 

  • Salthe S.N. 1985. Evolving Hierarchiscal Systems: their structure and representation. Columbia University Press, New York, NY, U.S.A.

    Google Scholar 

  • Schneider D.C. 2001. The rise of the concept of scale in ecology. Bioscience 51, 7: 545-553.

    Article  Google Scholar 

  • Schulze E.D., Kelliher F.M., Körner C., Lloyd J. and Leuning R. 1994. Relationships among Maximum Stomatal Conductance, Ecosystem Surface Conductance, Carbon Assimilation Rate, and Plant Nitrogen Nutrition - a Global Ecology Scaling Exercise. Annual Review of Ecology and Systematics 25: 629-690.

    Article  Google Scholar 

  • Solomon A.M. and Kirilenko A.P. 1997. Climate change and terrestrial biomass: what if trees do not migrate! Global Ecology and Biogeography Letters 6, 2: 139-148.

    Article  Google Scholar 

  • Thornton P.E. 1998. Regional ecosystem simulation: combining surface- and satellite-based obser-vations to study linkages between terrestrial energy and mass budgets. Ph.D. Dissertation, No., School of Forestry, University of Montana, Missoula, MT.

    Google Scholar 

  • Thornton P.E., Law B.E., Gholz H.L., Clark K.L., Falge E., Ellsworth D.S., Goldstein A.H., Monson R.K., Hollinger D., Falk M., Chen J. and Sparks J.P. 2002. Modeling and measuring the effects of disturbance history and climate on carbon and water budgets in evergreen needleleaf forests. Agricultural and Forest Meteorology 113: 185-222.

    Article  Google Scholar 

  • Thornton P.E. and Zimmermann N.E. submitted. An improved canopy integration scheme for a land surface model with prognostic canopy structure. Journal of Climate.

    Google Scholar 

  • Urban D.L. 2005. Modeling ecological processes across scales. Ecology 86, 8: 1996-2006.

    Article  Google Scholar 

  • Urban D.L., Acevedo M.F. and Garman S.L. 1999. Scaling fine-scale processes to large-scale pat-terns using models derived from models: meta-models. In: Mladenoff D.J. and Baker W.L. (eds.). Spatial modeling of forest landscape change: approaches and applications, pp. 70-98. Cambridge University Press, Cambridge.

    Google Scholar 

  • Wiens J.A. 1989. Spatial Scaling in Ecology. Functional Ecology 3, 4: 385-397.

    Article  Google Scholar 

  • Wu J. 1999. Hierarchy and scaling: extrapolating information along a scaling ladder. Canadian Journal of Remote Sensing 25, 4: 367-380.

    Google Scholar 

  • Wu J. 2004. Effects of changing scale on landscape pattern analysis: scaling relations. Landscape Ecology 19, 2: 125-138.

    Article  Google Scholar 

  • Wu J. and David J.L. 2002. A spatially explicit hierarchical approach to modeling complex ecological systems: theory and applications. Ecological Modelling 153, 1-2: 7-26.

    Article  Google Scholar 

  • Wu J. and Qi Y. 2000. Dealing with scale in landscape analysis: an overview. Geograpical Information Science 6, 1: 1-5.

    Google Scholar 

  • Zimmermann N.E. and Kienast F. 1999. Predictive mapping of alpine grasslands in Switzerland: species versus community approach. Journal of Vegetation Science 10, 4: 469-482.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Lischke, H., Löffler, T.J., Thornton, P.E., Zimmermann, N.E. (2007). Model Up-scaling in Landscape Research. In: Kienast, F., Wildi, O., Ghosh, S. (eds) A Changing World. Landscape Series, vol 8. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4436-6_16

Download citation

Publish with us

Policies and ethics