• Maurizio Vurro
  • Jonathan Gressel
Part of the Progress in Biological Control book series (PIBC, volume 2)


Biocontrol has been ineffective against major agricultural pests in the field, and has not provided the tools to cost-effectively compete with chemical pesticides, despite the theoretical benefits. The ecological and evolutionary reasons for the lack of effectiveness have been examined in detail in a recent book (Vurro et al., 2001a) along with suggestions on how to safely enhance their activity.


Biological Control Fusarium Oxysporum Biocontrol Agent Terminal Restriction Fragment Length Polymorphism Methyl Bromide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alabouvette, C., & Steinberg, C. (1995). Suppressiveness of soils to invading microorganisms. In H. Hokkanen and J. M. Lynch (eds.). Biological control benefits and risks. University Press, Cambridge, 3–12.Google Scholar
  2. Alabouvette, C., Hoeper, H., Lemanceau, P., & Steinberg, C. (1996). Soil Suppressiveness to diseases induced by soilborne plant pathogens. In G. Stotzky and J.-M. Bollag (eds.). Soil Biochemistry, vol. 9. Marcel Dekker, New York, 371–413.Google Scholar
  3. Altomare, C., Norvell, W. A., Björkman, T., Harman, G. E. (1999). Solubilization of phosphates and micronutrients by the plant-growth promoting and biocontrol fungus Trichoderma harzianum Rifai 1295–22. Applied and Environmental Microbiology, 65: 2926–2933.PubMedGoogle Scholar
  4. Amsellem, Z., Zidack, N. K., Quimby, Jr. P. C., & Gressel, J. (1999). Long term dry preservation of active mycelia of two mycoherbicidal organisms. Crop Protection, 18: 643–649.CrossRefGoogle Scholar
  5. Amsellem, Z., Kleifeld, Y., Kerenyi, Z., Hornok, L., Goldwasser, Y., & Gressel, J. (2001). Isolation, identification, and activity of mycoherbicidal pathogens from juvenile broomrape plants. Biological Control, 21: 274–284.CrossRefGoogle Scholar
  6. Aviv, D., Amsellem, Z., & Gressel, J. (2002). Transformation of carrots with mutant acetolactate synthase for Orobanche (broomrape) control. Plant Science, 58: 1187–1193.Google Scholar
  7. Bailey, B. A., & Lumsden, R. D. (1998). Direct effects of Trichoderma and Gliocladium on plant growth and resistance to pathogens. In C.P. Kubicek and G.E. Harman (eds.). Trichoderma and Gliocladium, Vol. 2. Taylor and Francis Ltd., London, 185–204.Google Scholar
  8. Berestetski, A.O. (1997). Study of the mycobiota of Cirsium arvense for developing a bioherbicide. In 10th EWRS Symposium. Poznan, Poland.Google Scholar
  9. Berestetski, A.O., Smolyaninova, N.V. (1998). Study of the mycobiota of Sonchus arvensis for developing a bioherbicide. In Proc. 4th Int. Bioherbicide Workshop. Glasgow, England, 27.Google Scholar
  10. Boari, A., & Vurro, M. (2004). Evaluation of Fusarium spp. and other fungi as biological control agents of Broomrape (Orobanche ramosa). Biological Control, 30: 212–219.CrossRefGoogle Scholar
  11. Boland, G.J., & Hall, R. (1994). Index of plant hosts of Sclerotinia sclerotiorum. Canadian Journal of Plant Pathology, 16: 93–108.CrossRefGoogle Scholar
  12. Butt, T.M., C. Jackson, C., & Magan, N. (2001). Fungi as biocontrol agents. Progress, problems and potential. Cabi Publishing, Wallingford, U.K., 416 pp.Google Scholar
  13. Cohen, B.A., Amsellem, Z., Maor, R., Sharon, A., and Gressel, J. (2002). Transgenically-enhanced expression of indole-3-acetic acid confers hypervirulence to plant pathogens. Phytopathology, 92: 590–596.PubMedGoogle Scholar
  14. Coley-Smith, J.R., & Cooke, R.C. (1971). Survival and germination of fungal sclerotia. Annual Review of Phytopathology, 9: 65–92.CrossRefGoogle Scholar
  15. Couteaudier, Y., & Alabouvette, C. (1990). Quantitative comparison of Fusarium oxysporum competitiveness in relation with carbon utilization. FEMS Microbiology Ecology, 74: 261–268.CrossRefGoogle Scholar
  16. Donald, W. W. (1994). The biology of Canada thistle (Cirsium arvense). Review of Weed Science, 6: 77–101.Google Scholar
  17. Eparvier, A., & Alabouvette, C. (1994). Use of ELISA and GUS-transformed strains to study competition between pathogenic Fusarium oxysporum for root colonization. Biocontrol Science and Technology, 4: 35–47.Google Scholar
  18. Fogliano, V., Ballio, A., Gallo, M., Woo, S., Scala, F., & Lorito, M. (2002). Pseudomonas lipodepsipeptides and fungal cell wall-degrading enzymes act synergistically in biological control. Molecular Plant-Microbe Interactions, 15: 323–333.PubMedGoogle Scholar
  19. Fuchs, J.G., Moenne-Loccoz, Y., Defago, G. (1997). Nonpathogenic Fusarium oxysporum strain Fo47 induces resistance to Fusarium wilt in tomato. Plant Disease, 81: 492–496.Google Scholar
  20. Gressel, J. (2001). Potential failsafe mechanisms against the spread and introgression of transgenic hypervirulent biocontrol fungi. Trends in Biotechnology, 19: 149–154.PubMedCrossRefGoogle Scholar
  21. Gressel, J. (2002). Molecular Biology of Weed Control. Taylor and Francis, London.Google Scholar
  22. Gressel, J., & Ehrlich, G. (2002). Universal inheritable barcodes for identifying organisms. Trends in Plant Science, 7: 542–544.PubMedCrossRefGoogle Scholar
  23. Gressel, J., Michaeli, D., Kampel, V., Amsellem, Z., & Warshawsky, A. (2002). Ultralow calcium requirements of fungi facilitate use of calcium regulating agents to suppress host calcium-dependent defenses, synergizing infection by a mycoherbicide. Journal of Agricultural and Food Chemistry, 50: 6353–636.PubMedCrossRefGoogle Scholar
  24. Gressel, J. (2004). Transgenic mycoherbicides; needs and safety considerations. In D.K. Arora (ed.). Handbook of Fungal Biotechnology, 2nd ed. Dekker, New-York. Chapter 42: 549–564.Google Scholar
  25. Harman, G.E., & Kubicek, C.P. (1998). Trichoderma and Gliocladium (Vol. 2). Taylor and Francis Ltd., London.Google Scholar
  26. Harman, G.E., & Björkman, T. (1998). Potential and existing uses of Trichoderma and Gliocladium for plant disease control and plant growth enhancement. In G.E. Harman & C.P. Kubicek (eds.). Trichoderma and Gliocladium. Taylor and Francis Ltd., London, 229–265Google Scholar
  27. Harman, G.E., Lorito, M., Di Pietro, A., & Hayes, C.K. (1994). Antifungal synergistic combination of enzyme fungicide and non-enzymatic fungicide and use thereof. U.S. Patent 5,326,561.14 pages.Google Scholar
  28. Harman, G.E., Lorito, M., Di Pietro, A., Hayes, C.K., Scala, F., & Kubicek, C.P. (2003). Combinations of fungal cell wall degrading enzyme and fungal cell membrane affecting compound. U.S. Patent 6,512,166. 88 pages.Google Scholar
  29. Hershenhorn, J., Goldwasser, Y., Plakhine, D., Ali, R., Blumenfeld, T., Bucsbaum, H., Herzlinger, G., Golan, S., Chilf, T., Eizenberg, H., Dor, E., & Kleifeld, Y. (1998). Orobanche aegyptiaca control in tomato fields with sulfonylurea herbicides. Weed Research, 38: 343–349.CrossRefGoogle Scholar
  30. Holm, L.G., Plunkett, D.L., Pancho, J.V., & Herberger, J.P. (1977). The World’s Worst Weeds: Distribution and Biology. University Press of Hawaii, Honolulu.Google Scholar
  31. Höper, H., Steinberg, C., & Alabouvette, C. (1995). Involvement of clay type and pH in the mechanisms of soil suppressiveness to fusarium wilt of flax. Soil Biology and Biochemistry, 27: 955–967.CrossRefGoogle Scholar
  32. Joel, D.M, Kleifeld, Y., Losner-Goshen, D., Herzlinger, G., & Gressel, J. (1995). Transgenic crops against parasites. Nature, 374: 220–221.CrossRefGoogle Scholar
  33. Kanampiu, F. K., Kabambe, V., Massawe, C., Jasi, L., Ransom, J.K., Friesen, D., & Gressel, J. (2003). Multisite, multi-season field tests demonstrate that herbicide seed-coating herbicide-resistance maize controls Striga spp. and increases yields. Crop Protection, 22: 697–706.Google Scholar
  34. Lemanceau, P., & Alabouvette, C. (1991). Biological control of fusarium diseases by fluorescent Pseudomonas and non-pathogenic Fusarium. Crop Protection, 10: 279–286.CrossRefGoogle Scholar
  35. Lemanceau, P., Bakker, P.A., De Kogel, W.J., Alabouvette, C., & Schippers B. (1993). Antagonistic effect on nonpathogenic Fusarium oxysporum strain Fo47 and pseudobactin 358 upon pathogenic Fusarium oxysporum f. sp. dianthi. Applied Environmental Microbiology, 59: 74–82.Google Scholar
  36. Leth, V., & Andreasen, C. (1999). Phomopsis cirsii: A promising control agent for Cirsium arvense, In: Program abstracts, X International Symposium on Biological control of weeds. USDA-ARS and Montana State University, Bozeman, 116.Google Scholar
  37. Lorito, M., Woo, S.L., Garcia Fernandez, I., Colucci, G., Harman, G.E., Pintor-Toro, J.A., Filippone, E., Muccifora, S., Lawrence, C.B., Zoina, A., Tuzun S., & Scala, F. (1998). Genes from mycoparasitic fungi as a source for improving plant resistance to fungal pathogens. Proceedings of the National Academy of Sciences of USA, 95: 7860–7865.CrossRefGoogle Scholar
  38. Lorito, M., Harman, G., Hayes, C., Broadway, R., Tronsmo, A., Woo, S., & Di Pietro, A. (1993). Chitinolytic enzymes produced by Trichoderma harzianum: antifungal activity of purified endochitinase and chitobiosdase. Phytopathology, 83: 302–307.Google Scholar
  39. Lorito, M., Scala, F., Zoina, A., & Woo, S.L. (2001). Enhancing biocontrol of fungal pests by exploiting the Trichoderma genome. In M. Vurro & J. Gressel (eds.). Enhancing Biocontrol Agents and Handling Risks. IOS Press, Amsterdam, Chapter 22: 248–259.Google Scholar
  40. McQuilken, M.P., Mitchell, S.J., Budge, S.P., Whipps, J.M., Fenlon, J.S., & Archer, S.A. (1995). Effect of Coniothyrium minitans on sclerotial survival and apothecial production of Sclerotinia sclerotiorum in field-grown oilseed rape. Plant Pathology, 44: 883–896.Google Scholar
  41. Merriman, P.R. (1976). Survival of sclerotia of Sclerotinia sclerotiorum in soil. Soil Biology and Biochemistry, 8: 385–389.CrossRefGoogle Scholar
  42. Moretti, A., Kerényi, Z., Mulé, G., Waalwijk, C., & Hornok, L. (2002). Identification of mating type sequences in toxigenic Fusarium species known as asexual fungi. In: G. Vannacci and S. Sarrocco (Eds.). Proceedings Sixth European Conference on Fungal Genetics. Pacini, Pisa, 394.Google Scholar
  43. Romero, R.M., Roberts, M.F., & Phillipson, J.D. (1995). Anthranilate synthase in microorganisms and plants. Phytochemistry, 39: 263–276.PubMedCrossRefGoogle Scholar
  44. Sauerborn, J. (1991). The economic importance of the phytoparasites Orobanche and Striga. In J. Ransom, L. J. Musselman, A. D. Worsham and C. Parker (eds.). Fifth International Symposium on Parasitic Weeds. CIMMYT, Nairobi.Google Scholar
  45. Scanlan, R. A. (1977). Flavor quality: Objective measurement. American Chemical Soc., Washington DC, 117 pp.Google Scholar
  46. Schroeder, D., Müller-Schärer, H., & Stinson, C.S.A. (1993). A European weed survey in 10 major crop systems to identify targets for biological control. Weed Research, 33: 449–458.CrossRefGoogle Scholar
  47. Turner, G. J., & Tribe, H. T. (1976). On Coniothyrium minitans and its parasitism of Sclerotinia species. Transactions of the British Mycological Society, 66: 97–105.CrossRefGoogle Scholar
  48. Vurro, M., Gressel, J., Butt, T., Harman, G.E., Pilgeram, A., St.Leger, R.J., & Nuss, D.L. (2001a).. Enhancing biocontrol agents and handling risks. NATO Science Series: Life and Behavioural Sciences, vol. 339. IOS Press, Amsterdam.Google Scholar
  49. Vurro, M., Zonno, M.C., Evidente, A., Andolfi, A., & Montemurro, P. (2001b).. Enhancement of efficacy of Ascochyta caulina to control Chenopodium album by use of phytotoxins and reduced rates of herbicides. Biological Control, 21: 182–190.CrossRefGoogle Scholar
  50. Whipps, J. M. (1993). Growth of the collembolan Folsomia Candida on cultures of the mycoparasite Coniothyrium minitans and sclerotia of Sclerotinia sclerotiorum. Mycological Research, 97: 1277–1280.Google Scholar
  51. Whipps, J. M., & Budge, S. P. (1993). Transmission of the mycoparasite Coniothyrium minitans by collembolan Folsomia Candida (Collembola: Entomobryidae) and glasshouse sciarid Bradysia sp. (Diptera: Sciaridae). Annals of Applied Biology, 123: 165–171.CrossRefGoogle Scholar
  52. Whipps, J.M., & Gerlagh, M. (1992). Biology of Coniothyrium minitans and its potential for use in disease biocontrol. Mycological Research, 96: 897–907.CrossRefGoogle Scholar
  53. Whipps, J.M., & Lumsden, R.D. (2001). Commercial use of fungi as plant disease biological control agents: status and prospects. In T. Butt, C. Jackson & N. Magan (eds.). Fungal Biocontrol Agents–Progress, Problems and Potential. CAB International, Wallingford, 9–22.Google Scholar
  54. Williams, R. H., Whipps, J., Cooke, M., & Roderic, C. (1998). The role of soil mesofauna in dispersal of Coniothyrium minitans: transmission to sclerotia of Sclerotinia sclerotiorum. Soil Biology and Biochemistry, 30: 1929–1935.CrossRefGoogle Scholar
  55. Williams, R. H., Whipps, J., Cooke, M., & Roderic, C. (1998). The role of soil mesofauna in dispersal of Coniothyrium minitans: mechanisms of transmission. Soil Biology and Biochemistry, 30: 1937–1945.CrossRefGoogle Scholar
  56. Yang, G.P., Ross, D.T., Kuang, W.W., Brown, P.O., & Weigel, R.J. (1999). Combining SSH and cDNA microarrays for rapid identification of differentially expressed genes. Nucleic Acids Research, 27: 1517–1523.PubMedCrossRefGoogle Scholar
  57. Yun, S.H., Arie, T., Kaneko, I., Yoder, O. C., & Turgeon, B.G. (2000). Molecular organization of mating type loci in heterothallic, homothallic, and asexual GibberellalFusarium species. Fungal Genetics and Biology, 31: 7–20.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Maurizio Vurro
  • Jonathan Gressel

There are no affiliations available

Personalised recommendations