Characterization of a range-dependent environment from towed array data

  • Mark Fallat
  • Peter Nielsen
  • Stan E. Dosso
  • Martin Siderius


Sound Speed Inversion Result Sediment Depth Acoustic Data Posterior Probability Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fallat M. R. and Dosso S. E., Geoacoustic inversion via local, global and hybrid algorithms. J. Acoust. Soc. Am. 105(3), 219-230 (1999).Google Scholar
  2. 2.
    Dosso S. E., Wilmut M. J. and Lapinski A-L. S., An adaptive hybrid algorithm for geoacoustic inversion. IEEE J. Ocean. Eng. 21(3), 324-336 (2001).CrossRefGoogle Scholar
  3. 3.
    Dosso, S. E., Quantifying uncertainty in geoacoustic inversion I. A fast Gibbs sampler approach. J. Acoust. Soc. Am. 111, 129-142 (2002).CrossRefGoogle Scholar
  4. 4.
    Dosso S. E. and Nielsen P. L., Quantifying uncertainty in geoacoustic inversion II. Application to broadband, shallow-water data. J. Acoust. Soc. Am. 111, 143-159 (2002).CrossRefGoogle Scholar
  5. 5.
    Westwood E. K. and Vidmar P. J., Eigenray finding and time series simulation in a layered-bottom ocean. J. Acoust. Soc. Am. 81, 912-924 (1987).CrossRefGoogle Scholar
  6. 6.
    Westwood E. K. and Tindle. C. T., Shallow water time series simulation using ray theory. J. Acoust. Soc. Am. 81, 1752-1761 (1987).CrossRefGoogle Scholar
  7. 7.
    Jesus S. M. and Caiti. A., Estimating geoacoustic bottom properties from a towed array data.J. Comp. Acoust. 4, 273-290 (1996).CrossRefGoogle Scholar
  8. 8.
    Caiti A., Jesus S. M., and Kristensen A., Geoacoustic sea oor exploration with a towed array in a shallow water area of the Strait of Sicily. IEEE J. Ocean. Eng. 21, 355-366 (1996).CrossRefGoogle Scholar
  9. 9.
    Siderius M., Nielsen P. L. and Gerstoft P., Range-dependent seabed characterization by inversion of acoustic data from a towed receiver array. J. Acoust. Soc. Am. 112,1523-1535 (2002).CrossRefGoogle Scholar
  10. 10.
    Fallat M. R., Dosso, S. E and Nielsen P. L., An investigation of algorithm-induced variability in geoacoustic inversion. IEEE J. Ocean. Eng. 29, 78-87 (2004).CrossRefGoogle Scholar
  11. 11.
    Osler J. and Algan O., A high resolution seismic sequence analysis of the Malta Plateau. Tech.Rep. SR 311, SACLANT Undersea Research Centre, La Spezia, Italy (1999).Google Scholar
  12. 12.
    Nelder J. A. and Mead R., A simplex method for function minimization. Computer Journal 7, 308-311 (1965).Google Scholar
  13. 13.
    Press W. H., Teukolsky S. A., Vetterling W. T. and Flannery B. P., Numerical Recipes, Cambridge University Press, Cambridge, England (1992).Google Scholar
  14. 14.
    Szu H. and Hartley R., Fast simulated annealing. Phys. Lett. A122, 157-162 (1987).Google Scholar
  15. 15.
    Liu P., Hartzell S. and Stephenson W., Non-linear Multiparameter Inversion Using a HybridGlobal Search Algorithm: Applications in Reflection Seismology. Geophys. J. Int. 122, 991-1000 (1995).CrossRefGoogle Scholar
  16. 16.
    Fallat M. R., Nielsen, P. L. and Dosso S. E., Hybrid geoacoustic inversion of broadband Mediterranean Sea Data. J. Acoust. Soc. Am. 107, 1967-1977 (2000).CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Mark Fallat
    • 1
  • Peter Nielsen
    • 2
  • Stan E. Dosso
    • 3
  • Martin Siderius
    • 4
  1. 1.NATO Undersea Research CentreLa SpeziaItaly
  2. 2.NATO Undersea Research CentreLa SpeziaItaly
  3. 3.School of Earth and Ocean SciencesUniversity of VictoriaVictoriaCanada
  4. 4.Science Application International CorporationLa JollaUSA

Personalised recommendations