Advertisement

Backpropagation techniques in ocean acoustic inversion: time reversal, retrogation and adjoint model – A review

  • Matthias Meyer
  • Jean - Pierre Hermand

Keywords

Time Reversal Multiple Input Multiple Output Internal Tide Wave Guide Multiple Input Multiple Output 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Parvulescu A., Signal detection in a multipath medium by M.E.S.S. processing. J. Acoust. Soc. Am., 33(11):1674, November (1961).CrossRefGoogle Scholar
  2. 2.
    Parvulescu A. and Clay C.S., Reproducibility of signal transmissions in the ocean. Radio Elec. Eng., 29:223-28 (1965).CrossRefGoogle Scholar
  3. 3.
    Parvulescu A., Matched signal MESS” processing by the ocean. J. Acoust. Soc. Am., 98(2):943-60, November (1995).CrossRefGoogle Scholar
  4. 4.
    Bucker H.P., Use of calculated sound fields and matched-field detection to locate sound sources in shallow water. J. Acoust. Soc. Am., 59(2):368-373 (1976).CrossRefGoogle Scholar
  5. 5.
    Tolstoy A., Matched Field Processing for Underwater Acoustics. World Scientific, Singapore (1993).Google Scholar
  6. 6.
    Baggeroer A.B., Kuperman W.A. and Mikhalevsky P.N., An overview of matched field processing in ocean acoustics. IEEE J. Oceanic Eng., 18(4):401-24, October (1993).CrossRefGoogle Scholar
  7. 7.
    Wilson J.H., Rajan S.D. and Null J.M, editors. Inverse techniques and the variability of sound propagation in shallow water. IEEE J. Oceanic Eng., Special issue, 21(4), October (1996).Google Scholar
  8. 8.
    Chapman R.,Chin-Bin S., D. King and EvansR. editors. Geoacoustic inversion in rangedependent shallow water environments. IEEE J. Oceanic Eng., Special issue (Pt.1), 28(3), July (2003). Google Scholar
  9. 9.
    Chapman R., Chin-Bin S., King D. and Evans R., editors. Geoacoustic inversion in rangedependent shallow water environments. IEEE J. Oceanic Eng., Special issue (Pt.2), 29(1), January (2004).Google Scholar
  10. 10.
    Diachok O., Caiti A., Gerstoft P. and Schmidt H., editors. Full field inversion methods in ocean and seismo acoustics, Norwell, MA, USA, and Dordrecht, The Netherlands, 1995. Kluwer Academic Publisher.Google Scholar
  11. 11.
    Caiti A., Hermand J.-P., Porter M.B. and Jesus S., editors. Experimental Acoustic Inversion Methods for Exploration of the Shallow Water Environment. Kluwer Academic (2000).Google Scholar
  12. 12.
    Taroudakis M.I. and Markaki M.G., editors. Inverse Problems in Underwater Acoustics. Springer (2001).Google Scholar
  13. 13.
    Hermand J.-P. and Gerstoft P., Inversion of broad-band multitone acoustic data from the YELLOW SHARK summer experiments. IEEE J. Oceanic Eng., 21(4):324-46, October (1996).CrossRefGoogle Scholar
  14. 14.
    Baggeroer A.B., Kuperman W.A. and Schmidt H., Matched field processing: Source localization in correlated noise as an optimum parameter estimation problem. J. Acoust. Soc. Am., 83 (2):571-87 (1988).CrossRefGoogle Scholar
  15. 15.
    Richardson A.M. and Nolte L.W., A posteriori probability source localization in an uncertain sound speed, deep ocean environment. J. Acoust. Soc. Am., 89(5):2280-2284 (1991).CrossRefGoogle Scholar
  16. 16.
    Krolik J.L., Matched-field minimum variance beamforming in a random ocean channel. J. Acoust. Soc. Am., 92(3):1408-1419 (1992).CrossRefGoogle Scholar
  17. 17.
    Michalopoulou Z.-H. and Porter M.B., Matched-field processing for broad-band source localization. IEEE J. Oceanic Eng., 21(4):384-92, October (1996).CrossRefGoogle Scholar
  18. 18.
    O i G.J. Nicholas M. and Perkins J.S., The matched-phase coherent multi-frequency matched-field processor. J. Acoust. Soc. Am., 107(5):2563-75 (2000).CrossRefGoogle Scholar
  19. 19.
    Soares C. and Jesus S.M., Broadband matched field processing: Coherent and incoherent approaches. J. Acoust. Soc. Am., 113(5):2587-98, May (2003).CrossRefGoogle Scholar
  20. 20.
    Hermand J.-P. and Roderick W.I., Acoustic model-based matched filter processing for fading time-dispersive ocean channels: Theory and experiment. IEEE J. Oceanic Eng., 18(4):447-465, October (1993).CrossRefGoogle Scholar
  21. 21.
    Tappert F.D., Nghiem-Phu L. and Daubin S.C., Source localization using the PE method. J. Acoust. Soc. Am., 78(S1):S30 (1985).CrossRefGoogle Scholar
  22. 22.
    Nghiem-Phu L. and F.D. Tappert, Modeling of reciprocity in the time domain using the parabolic equation method. J. Acoust. Soc. Am., 78(1):164-71, July (1985).CrossRefGoogle Scholar
  23. 23.
    Nghiem-Phu L. and F.D. Tappert, Parabolic equation modeling of the effects of ocean currents on sound transmission and reciprocity in the time domain. J. Acoust. Soc. Am., 78(2):642-48, August (1985).CrossRefGoogle Scholar
  24. 24.
    Thomson D.J., Ebbeson G.R. and Maranda B.H., A matched field backpropagation algorithm for source localization. In Proceedings of MTS/IEEE Oceans 1997, volume 1, pages 602-607, Washington, DC, (1997). Marine Technol. Soc.Google Scholar
  25. 25.
    Thomson D.J., Ebbeson G.R. and Maranda B.H., A parabolic equation based backpropagation algorithm for matched field processing. J. Acoust. Soc. Am., 103(5):2821, May (1998).CrossRefGoogle Scholar
  26. 26.
    Thomson D.J. and Ebbeson G.R., A backpropagated PE method for matched field and matched mode localization. In Proceedings of the 6th International Conference on Theoretical and Computational Acoustics. Hawaii, USA (2003).Google Scholar
  27. 27.
    I-Tai Lu and Voltz P., A back-propagating ray technique for source localization. J. Acoust. Soc. Am., 91(4):2366-2366 (1992).Google Scholar
  28. 28.
    Voltz P. and I-Tai Lu., A time-domain backpropagating ray technique for source localization. J. Acoust. Soc. Am., 95(2):805-812 (1994).CrossRefGoogle Scholar
  29. 29.
    Collins M.D. and Kuperman W.A., Focalization: Environmental focusing and source localization. J. Acoust. Soc. Am., 90(3):1410-1422, September (1991).CrossRefGoogle Scholar
  30. 30.
    Collins M.D. and Baer R.N., Focalization in the presence of internal waves. J. Acoust. Soc. Am., 114(4):2401, October (2003).Google Scholar
  31. 31.
    Dizaji R.M., Chapman N.R. and Kirlin R.L., Geoacoustic parameter estimation using back wave propagation technique. In M. Meng, editor, Proceedings of the IEEE Canadian Conference on Electrical and Computer Engineering, volume 3, pages 1547-52. IEEE, Piscataway, NJ (1999).Google Scholar
  32. 32.
    Dizaji R.M., Chapman N.R. and Kirlin R.L., A phase regulated back wave propagation technique for geoacoustic inversion. J. Acoust. Soc. Am., 111(2):800-8, February (2002).CrossRefGoogle Scholar
  33. 33.
    Ozard J.M., Yeremy M.L., Chapman N.R. and Wilmut M.J., Matched-field processing in a range-dependent shallow water environment in the northeast pacific ocean. IEEE J. Oceanic Eng., 21(4):377-83, October (1996).CrossRefGoogle Scholar
  34. 34.
    Gerstoft P., Hodgkiss W.S., Kuperman W.A., and Song H., Phenomenological and global optimization inversion. IEEE J. Oceanic Eng., April (2003).Google Scholar
  35. 35.
    Jackson D.R. and Dowling D.R., Phase conjugation in underwater acoustics. J. Acoust. Soc. Am., 89(1):171-181 (1991).CrossRefGoogle Scholar
  36. 36.
    Kuperman W.A., Hodgkiss W.S., Song H.C., Akal T., Ferla C. and Jackson D.R., Phase conjugation in the ocean: Experimental demonstration of an acoustic time-reversal mirror. J. Acoust. Soc. Am., 103(1):25-40 (1998).CrossRefGoogle Scholar
  37. 37.
    Hodgkiss W.S., Song H.C., Kuperman W.A., Akal T., Ferla C. and Jackson D.R., A long-range and variable focus phase conjugation experiment in shallow water. J. Acoust. Soc. Am., 105:1597-1604 (1999).CrossRefGoogle Scholar
  38. 38.
    Edelman G., Akal T., Hodgkiss W.S., Kim S., Kuperman W.A. and Song H.C., An initial demonstration of underwater acoustic communication using time reversal. IEEE J. Oceanic Eng., 27:602-609 (2002).CrossRefGoogle Scholar
  39. 39.
    Kim S., Kuperman W.A., Hodgkiss W.S., Song H.C., Edelmann G.F. and Akal T., Robust time reversal focusing in the ocean. J. Acoust. Soc. Am., 114(1):145-157 (2003).CrossRefGoogle Scholar
  40. 40.
    Sabra K.G. and Dowling D.R., Effects of time-reversing array deformation in an ocean wave guide. J. Acoust. Soc. Am., 115(6):2844-2847 (2004).CrossRefGoogle Scholar
  41. 41.
    Sabra K.G. and Dowling D.R., Broadband performance of a time reversing array with a moving source. J. Acoust. Soc. Am., 115(6):2807-2817 (2004).CrossRefGoogle Scholar
  42. 42.
    Song H.C., Kim S., Hodgkiss W.S. and Kuperman W.A., Environmentally adaptive reverberation nulling using a time reversal mirror. J. Acoust. Soc. Am., 116(2):762-768 (2004).CrossRefGoogle Scholar
  43. 43.
    Sabra K., Roux P., Song H.-C., Hodgkiss W., Kuperman W., Akal T. and Stevenson M., Experimental demonstration of time reversed reverberation focusing in an oceanic waveguide. J. Acoust. Soc. Am., 116(4):2526-2526 (2004).Google Scholar
  44. 44.
    Prada C., Wu F. and Fink M., The iterative time reversal mirror: A solution to self-focusing in the pulse echo mode. J. Acoust. Soc. Am., 90(2):1119-1129 (1991).CrossRefGoogle Scholar
  45. 45.
    Prada C., Manneville S., Spoliansky D. and Fink M., Decomposition of the time reversal operator: Detection and selective focusing on two scatterers. J. Acoust. Soc. Am., 99(4):2067-2076 (1996).CrossRefGoogle Scholar
  46. 46.
    Song H.C., Kuperman W.A., Hodgkiss W.S., Akal T. and Ferla C., Iterative time reversal in the ocean. J. Acoust. Soc. Am., 105(6):3176-3184 (1999).CrossRefGoogle Scholar
  47. 47.
    Dowling D.R. , Acoustic pulse compression using passive phase-conjugate processing.J.Acoust. Soc. Am., 95(3):1450-1458 (1994).Google Scholar
  48. 48.
    Rouseff D., Jackson D.R., Fox W.L.J., Jones C.D., Ritcey J.A. and Dowling D.R., Underwater acoustic communication by passive-phase conjugation: theory and experimental results. IEEE J. Oceanic Eng., 26(4):821-831 (2003).CrossRefGoogle Scholar
  49. 49.
    Svensson E., Karasalo I. and Hermand J.-P., Time variability of an underwater acoustic channel. In Proceedings of the 10th International Congress on Sound and Vibration, pages 2633-2642. International Institute of Acoustics and Vibration, July (2003).Google Scholar
  50. 50.
    Sabra K.G. and Dowling D.R., Blind deconvolution in ocean waveguides using artificial time reversal. J. Acoust. Soc. Am., 116(1):262-271 (2004).CrossRefGoogle Scholar
  51. 51.
    Yang T.C., Performance comparisons between passive-phase conjugation and decisionfeedback equalizer for underwater acoustic communications. J. Acoust. Soc. Am., 115(5): 2505-2506 (2004).Google Scholar
  52. 52.
    Rouseff D., Intersymbol interference in underwater acoustic communications using time reversal signal processing. J. Acoust. Soc. Am., 117(2):780-788 (2005).CrossRefGoogle Scholar
  53. 53.
    Roux P., Kuperman W.A., Hodgkiss W.S., Song H.C., Akal T. and Stevenson M., A nonreciprocal implementation of time reversal in the ocean. J. Acoust. Soc. Am., 116(2):1009-1015 (2004).CrossRefGoogle Scholar
  54. 54.
    Hermand J.-P., A model-based acoustic time-reversal mirror for robust variable focusing. J. Acoust. Soc. Am., 110(5):2708: 3aSP8 (2001).Google Scholar
  55. 55.
    Hermand J.-P., Model-based spatial diversity processing with sparse receive arrays: Application to coherent acoustic communication in shallow water. In Proceedings of the 6th European Conference on Underwater Acoustics, ECUA 2002, pages 289-294. Gdansk, Poland, September (2002).Google Scholar
  56. 56.
    Candy J.V., Meyer A.W. Poggio A.J., and Guidry B.L., Time-reversal processing for an acoustic communications experiment in a highly reverberant environment. J. Acoust. Soc. Am., 115(4):1621-31, April (2004).CrossRefGoogle Scholar
  57. 57.
    Chambers D.H., Candy J.V., Lehmann S.K., Kallman J.S., Poggio A.J. and Meyer A.W., Time reversal and the spatio-temporal matched filter (L). J. Acoust. Soc. Am., 116(3):1348-50, September (2004).CrossRefGoogle Scholar
  58. 58.
    Clay C.S., Optimum time domain signal transmission and source localization in a waveguide. J. Acoust. Soc. Am., 81(3):660-64 (1987).CrossRefGoogle Scholar
  59. 59.
    Hermand J.-P., Broad-band geoacoustic inversion in shallow water from waveguide impulse response measurements on a single hydrophone: Theory and experimental results. IEEEJ. Oceanic Eng., 24(1):41-66, January (1999).CrossRefGoogle Scholar
  60. 60.
    Michalopoulou Z.-H., Matched-impulse-response processing for shallow-water localization and geoacoustic inversion. J. Acoust. Soc. Am., 108(5):2082-90, November (2000).CrossRefGoogle Scholar
  61. 61.
    Le Gac J.-C., Asch M., Stéphan Y. and Demoulin X., Geoacoustic inversion of broadband acoustic data in shallow water on a single hydrophone. IEEE J. Oceanic Eng., April (2003).Google Scholar
  62. 62.
    Stéphan Y., Demoulin X., Folegot T., Jesus S.M., Porter M.B. and Coelho E., Acoustical effects of internal tides on shallow water propagation: an overview of the INTIMATE 96 experiment. In A. Caiti, J.P. Hermand, S.M. Jesus, and M.B. Porter, editors, Experimental Acoustic inversion methods for exploration of the shallow water environment, pages 19-38. Kluwer Academic, Dordrecht, The Netherlands (2003).Google Scholar
  63. 63.
    Kalman R.E. and Bucy R.S., New results in linear filtering and prediction theory. Trans. Amer. Soc. Mech. Eng. J. Basic Engineering, 83:95-108 (1961).Google Scholar
  64. 64.
    Bellman R., Adaptive Control Process. Princeton University Press (1961).Google Scholar
  65. 65.
    Gelfand I.M. and Fomin S.V., Calculus of Variations. Prentice-Hall, Englewood Cliffs, NJ (1963).Google Scholar
  66. 66.
    Feldbaum A.A., Optimal Control Systems. Academic Press, New York (1965).Google Scholar
  67. 67.
    Luenberger D.G., Optimization by Vector Space Methods. Wiley, New York (1969).Google Scholar
  68. 68.
    Kirk D.E., Optimal Control Theory. Prentice-Hall, Englewood Cliffs, NJ (1970).Google Scholar
  69. 69.
    Jazwinski A.H., Stochastic Processes and Filtering Theory. Academic Press, New York (1970).Google Scholar
  70. 70.
    Sage A.P. and Melsa J.L., Estimation Theory with Application to Communication and Control. McGraw-Hill, New York (1971).Google Scholar
  71. 71.
    Lions J.L., Optimal Control of Systems Governed by Partial Differential Equations, volume 170 of A series of comprehensive studies in mathematics. Springer Verlag, New York (1971).Google Scholar
  72. 72.
    Lions J.L., Exact controllability, stabilization and pertubations for distributed systems. SIAM Review, 30:71-86, March (1988).CrossRefGoogle Scholar
  73. 73.
    Candy J.V. and Sullivan E.J., Ocean acoustic signal processing: A model-based approach. J. Acoust. Soc. Am., 92(6):3185-3201, December (1992).CrossRefGoogle Scholar
  74. 74.
    Sullivan E.J. and Candy J.V., Space-time array processing: The model-based approach. J. Acoust. Soc. Am., 102(5):2809-20, November (1997).CrossRefGoogle Scholar
  75. 75.
    Candy J.V., Signal Processing: The Model-Based Approach. McGraw-Hill, New York (1986).Google Scholar
  76. 76.
    Tarantola A., Inversion of seismic reflection data in the acoustic approximation. Geophysics, 49:1259-1266 (1984).CrossRefGoogle Scholar
  77. 77.
    Tarantola A., Inverse Problem Theory: Methods for data fitting and model parameter estimation. Elsevier, New York (1987).Google Scholar
  78. 78.
    Talagrand O. and Courtier P., Les équations adjointes - Application à la modélisation numérique. Atelier modélisation de l'atmosphère, Direction de la météorologie, Toulouse, France (1986).Google Scholar
  79. 79.
    Carthel C., Glowinski R. and Lions J.L., On exact and approximate boundary controllabilitiesfor the heat equation: A numerical approach. Journal of Optimization Theory and Aplications, 82(3):429-84 (1994).CrossRefGoogle Scholar
  80. 80.
    Leredde Y., Lellouche J.-M., Devenon J.-L. and Dekeyser I., On initial, boundary conditions and viscosity coefficient control for Burgers' equation. Int. J. Num. Meth. Fluids, 28(1998).Google Scholar
  81. 81.
    Sirkes Z. and Tziperman E., Finite difference of adjoint or adjoint of finite difference. MonthlyWeather Rev., 125:3373-3378 (1997).Google Scholar
  82. 82.
    Errico R.M., What is an adjoint model? Bulletin of the American Meteorological Society,78:2577-91 (1997).CrossRefGoogle Scholar
  83. 83.
    Giles M.B. and Pierce N.A., An introduction to the adjoint approach to design. Flow, Turbulence and Combustion, 65:393-415 (2000).CrossRefGoogle Scholar
  84. 84.
    Gillivray P.R. and Oldenburg D.W., Methods for calculating Fréchet derivatives and sensitivities for the non-linear inverse problem: A comparative study. Geophysical Prospecting, 38:499-524 (1990).CrossRefGoogle Scholar
  85. 85.
    Norton S.J. Iterative inverse scattering algorithms: Methods of computing Fréchet derivatives. J. Acoust. Soc. Am., 106(5):2653-60, November (1999).CrossRefGoogle Scholar
  86. 86.
    Norton S.J., Iterative algorithms for computing the shape of a hard scattering object: Computing the shape derivative. J. Acoust. Soc. Am., 116(2):1002-08, August (2004).CrossRefGoogle Scholar
  87. 87.
    Le Gac J.-C., Stéphan Y., Asch M., Helluy P. and Hermand J.-P., A variational approach for geoacoustic inversion using adjoint modeling of a PE approximation model with non local impedance boundary conditions. In A. Tolstoy, Y.C. Teng, and E.C. Shang, editors, Theoretical and Computational Acoustics 2003, pages 254-263. World Scientific Publishing (2004).Google Scholar
  88. 88.
    Hursky P., Porter M.B., Hodgkiss W.S. and Kuperman W.A., Adjoint modeling for acoustic inversion. J. Acoust. Soc. Am., 115(2):607-19 (2004).CrossRefGoogle Scholar
  89. 89.
    Thode A., The derivative of a waveguide acoustic field with respect to a three-dimensional sound speed perturbation. J. Acoust. Soc. Am., 115(6):2824-33 (2004).CrossRefGoogle Scholar
  90. 90.
    Thode A. and Kim K., Multiple-order derivatives of a waveguide acoustic field with respect to sound speed, density, and frequency. J. Acoust. Soc. Am., 116(6):3370-83 (2004).CrossRefGoogle Scholar
  91. 91.
    Asch M., Le Gac J.-C. and Helluy P., An adjoint method for geoacoustic inversions. In Proceedings of the 2nd Conference on Inverse Problems, Control and Shape Optimization. Carthage, Tunisia (2002).Google Scholar
  92. 92.
    Meyer M., Hermand J.-P. and Asch M., Derivation of the adjoint of a wide angle parabolic equation for acoustic inversion. In Proceedings of the 7th European Conference on Underwater Acoustics, ECUA 2004, pages 727-32. Delft, The Netherlands, July (2004).Google Scholar
  93. 93.
    Meyer M., Hermand J.-P., Le Gac J.-C. and Asch M., Penalization method for WAPE adjoint-based inversion of an acoustic field. In Proceedings of the 7th European Conference on Underwater Acoustics, ECUA 2004, pages 243-48. Delft, The Netherlands, July (2004).Google Scholar
  94. 94.
    Meyer M. and Hermand J.-P., Optimal nonlocal boundary control of the wide-angle parabolic equation for inversion of a waveguide acoustic field. J. Acoust. Soc. Am., 117(5):2937-48, May (2005).CrossRefGoogle Scholar
  95. 95.
    Holland C.W., Hermand J.-P. and Dosso S., Fine-grained sediment geoacoustic properties from remote acoustic measurements. In Proceedings of the 7th European Conference on Underwater Acoustics, ECUA 2004, pages 677-84. Delft, The Netherlands, July (2004).Google Scholar
  96. 96.
    Yevick D. and Thomson D.J., Nonlocal boundary conditions for finite-difference parabolic equation solvers. J. Acoust. Soc. Am., 106(1):143-50, July (1999).CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Matthias Meyer
    • 1
  • Jean - Pierre Hermand
    • 2
  1. 1.Environmental Hydroacoustics Laboratory Department of Optics and AcousticsUniversite libre de BruxellesBelgium
  2. 2.Environmental Hydroacoustics Laboratory Department of Optics and AcousticsUniversite libre de BruxellesBelgium

Personalised recommendations