Inversions of horizontal and vertical line array data for the estimation of geoacoustic model parameters

  • Dag Tollefsen
  • Michael J. Wilmut
  • Ross Chapman


Data Inversion Inversion Performance Source Range Trian Gles Geoacoustic Inversion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chapman R. and Taroudakis M. (eds.), Geoacoustic inversion in shallow water.J. Computat. Acoustics 8(2), (2000).Google Scholar
  2. 2.
    Gerstoft P., Inversion of seismoacoustic data using genetic algorithms and a posteriori probability distributions. J. Acoust. Soc. Am. 95, 770-781 (1994).CrossRefGoogle Scholar
  3. 3.
    Dosso S. E., Yeremy M. L., Ozard J. M. and Chapman N. R., Estimation of ocean bottom properties by matched-field inversion of acoustic field data.IEEE J. Oceanic Eng. 18, 232-239 (1993).CrossRefGoogle Scholar
  4. 4.
    Lindsay C. E. and Chapman N. R., Matched field inversion for geoacoustic model parameters using adaptive simulated annealing. IEEE J. Oceanic Eng. 18, 224-231 (1993).CrossRefGoogle Scholar
  5. 5.
    Knobles D. P., Koch R. A., Thompson L. A., Focke K. C. and Eisman P. E., Broadband sound propagation in shallow water and geoacoustic inversion. J. Acoust. Soc. Amer.113, 205-222 (2003).CrossRefGoogle Scholar
  6. 6.
    Dosso S. E., Wilmut M. J. and Lapinski A.-L. S., An adaptive-hybrid algorithm for geoacoustic inversion. IEEE J. Oceanic Eng. 26, 324-336 (2001).CrossRefGoogle Scholar
  7. 7.
    J. Settem, Acoustic properties of Quaternary sediments in the Barents Sea.IKU Petroleums-forskning, Trondheim, Norway, Rep. 23.2579.00/01/96 (1996).Google Scholar
  8. 8.
    Hamilton E. L., Geoacoustic modeling of the sea floor. J. Acoust. Soc. Amer.68, 1313-1340 (1980).CrossRefGoogle Scholar
  9. 9.
    Tollefsen D., Wilmut M. J. and Chapman N. R., Estimates of geoacoustic model parameters from inversions of horizontal and vertical line array data. IEEE J. Oceanic Eng., submitted (2004).Google Scholar
  10. 10.
    Tolstoy A., Chapman N. R. and Brooke G. H., Benchmarking geoacoustic inversion methods. J. Computat. Acoustics 6(1/2) 1-28 (1998).CrossRefGoogle Scholar
  11. 11.
    Chapman N. R., Chin-Bing S., King D. and Evans R. B. , Benchmarking geoacoustic inversion methods for range dependent waveguides. IEEE J. Oceanic Eng. 28, 320-330 (2003).CrossRefGoogle Scholar
  12. 12.
    Zakarauskas P., Dosso S. E. and Fawcett J. A., Matched-field inversion for source location and optimal equivalent bathymetry. J. Acoust. Soc. Amer. 100, 1493-1500 (1996).CrossRefGoogle Scholar
  13. 13.
    Harrison C. H. and Siderius M., Effective parameters for matched field geoacoustic inversion in range-dependent environments. IEEE J. Oceanic Eng. 28, 432-445 (2003).CrossRefGoogle Scholar
  14. 14.
    Westwood E. K., Tindle C. T. and Chapman N. R., A normal mode model for acousto-elastic ocean environments. J. Acoust. Soc. Amer. 100, 3631-3645 (1996).CrossRefGoogle Scholar
  15. 15.
    Bogart C. W. and Yang T. C., Source localization with horizontal arrays in shallow water: Spatial sampling and effective aperture. J. Acoust. Soc. Amer. 96, 1677-1686 (1994).CrossRefGoogle Scholar
  16. 16.
    Tantum S. L. and Nolte L. W., On array design for matched-field processing. J. Acoust. Soc. Amer. 107, 2101-2111 (2000).CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Dag Tollefsen
    • 1
  • Michael J. Wilmut
    • 2
  • Ross Chapman
    • 3
  1. 1.Maritime Systems DivisionNorwegian Defence Research EstablishmentHortenNorway
  2. 2.School of Earth and Ocean SciencesUniversity of VictoriaVictoriaCanada
  3. 3.School of Earth and Ocean SciencesUniversity of VictoriaVictoriaCanada

Personalised recommendations