Advertisement

A forward model for geoacoustic inversion based on ray tracing and plane-wave reflection coefficients

  • Jens M. Hovem
  • Hefeng Dong
  • Xiukun Li

Keywords

Sound Speed Transmission Loss Ricker Wavelet Beam Displacement Solid Half Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jensen F. B. and M. C. Ferla, SNAP: The SACLANTEN normal-mode acoustic propagation model. SM-121, SACLANT Undersea Research Centre, La Spezia, Italy (1979).Google Scholar
  2. 2.
    Collins M. D., A split-step Pade solution for parabolic equation method. J. Acoust. Soc. Am. 93,1726-1742 (1993).Google Scholar
  3. 3.
    Collins M. D., User guide for RAM version 1.0 and 1.0p, ftp://ram.nrl.navy.mil/pub/RAM/ (2001).Google Scholar
  4. 4.
    Schmidt H., SAFARI: Seismo-acoustic fast field algorithm for range independent environments (User’s guide). SR-113, SACLANT Undersea Research Centre, La Spezia, Italy (1987).Google Scholar
  5. 5.
    Schmidt H., OASES 1.6: Application and upgrade notes. Massachusetts Institute of Technol- ogy, Cambridge, MA (1993).Google Scholar
  6. 6.
    Hovem J. M., Marine Acoustics, (To be published by Applied Research Laboratories, The Uni- versity of Texas at Austin, Texas).Google Scholar
  7. 7.
    Westwood E. K . and Vidmar P. J., Eigenray Þnding and time series simulation in a layered-bottom ocean, J. Acoust. Soc. Am. 81, 912-924 (1987).Google Scholar
  8. 8.
    Westwood E. K and Tindle C. T., Shallow water time simulation using ray theory. J. Acoust. Soc. Am. 81, 1752-1761 (1987).CrossRefGoogle Scholar
  9. 9.
    Jensen F. B., Kuperman W. A., Porter M. B. and Schmidt H., Computational Acoustics, AIP, Press, New York Jersey (1993).Google Scholar
  10. 10.
    Clay C. S. and Medwin H., Acoustical Oceanography: Principles and Applications, Wiley- Interscience, USA, (1977).Google Scholar
  11. 11.
    Tindle C. T. and Bold G. E. J., Improved ray calculations in shallow water. J. Acoust. Soc. Am. 70(3),813-819 (1981).CrossRefGoogle Scholar
  12. 12.
    Pekeris A. L., The theory of propagation of explosive sound in shallow water. Geol. Soc. Am. Mem. 27 (1948).Google Scholar
  13. 13.
    Hovem J. M. and Kristensen A˚ , Reflection loss at a bottom with a fluid sediment layer over a hard solid half-space. J. Acoust. Soc. Am. 92(1), 335-340 (1992).CrossRefGoogle Scholar
  14. 14.
    Ainslie A. M., Conditions for the excitation of interface waves in a thin unconsolidated sediment layer. J. Sound and Vibration 268, 249-267 (2003).CrossRefGoogle Scholar
  15. 15.
    Chapman N. R., ChinBing S., King D. and Evans R. B., Benchmarking geoacoustic inversion methods for range-dependent waveguides. IEEE J. Oceanic Eng. 28, 320-330 (2003).CrossRefGoogle Scholar
  16. 16.
    Gerstoft P., SAGA User Manual 4.1: An inversion softwave package. SM-333, SACLANT Undersea Research Centre, La Spezia, Italy (1997).Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Jens M. Hovem
    • 1
  • Hefeng Dong
    • 2
  • Xiukun Li
    • 3
  1. 1.Acoustic Research CenterNorwegian University of Science and TechnologyTrondheimNorway
  2. 2.Acoustic Research CenterNorwegian University of Science and TechnologyTrondheimNorway
  3. 3.Faculty of Underwater Acoustic EngineeringHarbin Engineering UniversityHarbinChina

Personalised recommendations