Forest Economics, Natural Disturbances and the New Ecology

  • Thomas P. Holmes
  • Robert J. HuggettJr.
  • John M. Pye
Part of the Forestry Sciences book series (FOSC, volume 79)

The major thesis of this chapter is that the economic analysis of forest disturbances will be enhanced by linking economic and ecologic models. Although we only review a limited number of concepts drawn generally from mathematical and empirical ecology, the overarching theme we present is that ecological models of forest disturbance processes are complex and not particularly well-behaved from an economic perspective. We discover that standard concepts in the economists’ tool kit, such as asymptotic equilibrium and convex production, may not adequately represent the dynamic behavior of forest disturbances. Consequently, other tools for economic analysis will be required.

This chapter proceeds by first sketching out the economic problems deriving from the peculiar temporal and spatial dynamics associated with forest disturbances (section 2). Then we provide a brief overview of select topics in ecological literature supporting the view that some important forest disturbances exhibit multiple- or non-equilibrial processes and that, additionally, stochastic factors induce high variation in the spatial pattern of disturbance production (section 3). These themes are illustrated by reviewing two models: (1) the classic spruce budworm model of pest outbreak, demonstrating how the interaction of slow and fast ecosystem variables cause multiple equilibria (section 4), and (2) a cellular automata model of forest fires, which demonstrates how the local interaction of stochastic processes can generate the emergence of unconventional spatial signatures at larger spatial scales (section 5). The chapter ends with a summary of the main points and some suggestions for future research (section 6).


Slow Variable Fast Variable Forest Disturbance Capita Rate Singular Perturbation Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Berryman, A. A. 1992. On choosing models for describing and analyzing ecological time series. Ecology 73(2):694-698.CrossRefGoogle Scholar
  2. Berryman, A., and P. Turchin. 2001. Identifying the density-dependent structure underlying ecological time series. Oikos 92:265-270.CrossRefGoogle Scholar
  3. Botkin, D. B., and M. J. Sobel. 1975. Stability in time-varying ecosystems. American Naturalist 109:625-646.CrossRefGoogle Scholar
  4. Boulanger, Y., and D. Arseneault. 2004. Spruce budworm outbreaks in eastern Quebec over the last 450 years. Canadian Journal of Forest Research 34:1035-1043.CrossRefGoogle Scholar
  5. Bridge, S. R. J., K. Miyanishi, and E. A. Johnson. 2004. A critical evaluation of fire suppression effects in the boreal forest of Ontario. Forest Science 51:41-50.Google Scholar
  6. Brock, W. A., and D. Starrett. 2003. Managing systems with non-convex positive feedback. Environmental and Resource Economics 26:575-602.CrossRefGoogle Scholar
  7. Carpenter, S. R., and M. G. Turner. 2001. Hares and tortoises: Interactions of fast and slow variables in ecosystems. Ecosystems 3:495-497.CrossRefGoogle Scholar
  8. Chave, J., and S. Levin. 2003. Scale and scaling in ecological and economic systems. Environmental and Resource Economics 26:527-557.CrossRefGoogle Scholar
  9. Chiang, A. 1974. Fundamental methods of mathematical economics (Second edition). McGraw-Hill, New York.Google Scholar
  10. Clark, C. W. 1976. Mathematical bioeconomics—The optimal management of renewable resources. J. Wiley & Sons, New York.Google Scholar
  11. Crépin, A. -S. 2003. Multiple species boreal forests—What Faustmann missed. Environmental and Resource Economics 26:625-646.CrossRefGoogle Scholar
  12. Cumming, S. G. 2001. A parametric model of the fire-size distribution. Canadian Journal of Forest Research 31:1297-1303.CrossRefGoogle Scholar
  13. Dale, V. H., L. A. Joyce, S. McNulty, and R. P. Neilson. 2000. The interplay between climate change, forests, and disturbances. The Science of the Total Environment 262:201-204.CrossRefPubMedGoogle Scholar
  14. Dasgupta, P., and K. -G. Mäler. 2003. The economics of non-convex ecosystems: Introduction. Environmental and Resource Economics 26:499-525.CrossRefGoogle Scholar
  15. Dasgupta, P., and K. -G. Mäler (eds. ). 2004. The economics of non-convex ecosystems. Kluwer Academic Publishers, Dordrecht, The Netherlands.Google Scholar
  16. Davis L. S. 1965. The economics of wildfire protection with emphasis on fuel break systems. State of California, Division of Forestry, Sacramento.Google Scholar
  17. DeAngelis, D. L., and J. C. Waterhouse. 1987. Equilibrium and non-equilibrium concepts in ecological models. Ecological Monographs 57:1-21.CrossRefGoogle Scholar
  18. De Angelis, D. L., J. C. Waterhouse, W. M. Post. and R. V. O’Neill. 1985. Ecological modelling and disturbance evaluation. Ecological Modelling 29:399-419.Google Scholar
  19. Dombeck, M. P., J. E. Williams, and C. A. Wood. 2004. Wildfire policy and public lands: Integrating scientific understanding with social concerns across landscapes. Conservation Biology 18(4):883-889.CrossRefGoogle Scholar
  20. Drossel, B., and F. Schwabl. 1992. Self-organized critical forest-fire model. Physical Review Letters 69(11):1629-1632.CrossRefPubMedGoogle Scholar
  21. Egerton, F. N. 1973. Changing concepts of the balance of nature. Quarterly Review of Biology 48:322-350.CrossRefGoogle Scholar
  22. GAO [U. S. General Accounting Office]. 1998. Catastrophic wildfires threaten resources and communities. Report GAO/T-RCED-98-273. U. S. General Accounting Office, Washington, D. C., USA.Google Scholar
  23. GAO [U. S. General Accounting Office]. 1999. Nearby communities are increasingly threatened by catastrophic wildfires. Report GAO/T-RCED-99-79. U. S. General Accounting Office, Washington, D. C., USA.Google Scholar
  24. Grimsrud, K. M., and R. Huffaker. 2006. Solving multidimensional bioeconomic prob-lems with singular-perturbation reduction methods: Application to managing pest resistance to pesticidal crops. Journal of Environmental Economics and Management 51 (3):336-353.CrossRefGoogle Scholar
  25. Gumpertz, M. L., C-T Wu, and J. M. Pye. 2000. Logistic regression for southern pine beetle outbreaks with spatial and temporal autocorrelation. Forest Science 46(1):95-107.Google Scholar
  26. Hastings, A. 1996. Models of spatial spread: Is the theory complete? Ecology 77(6):1675-1679.CrossRefGoogle Scholar
  27. Hastings, A. 2004. Transients: The key to long-term ecological understanding? TRENDS in Ecology and Evolution 19:39-45.CrossRefPubMedGoogle Scholar
  28. Hastings, A., K. Cuddington, K. F. Davies, C. J. Dugaw, S. Elmendorf, A. Freestone, S. Harrison, M. Holland, J. Lambrinos, U. Malvadkar, B. A. Melbourne, K. Moore, C. Taylor, and D. Thomson. 2005. The spatial spread of invasions: New developments in theory and evidence. Ecology Letters 8:91-101.CrossRefGoogle Scholar
  29. Hastings, A., C. L. Hom, S. Ellner, P. Turchin, and H. C. J. Godfray. 1993. Chaos in ecology: Is mother nature a strange attractor? Annual Review of Ecology and Systematics 24:1-33 Google Scholar
  30. Heinselman, M. L. 1973. Fire in the virgin forests of the Boundary Waters Canoe Area, Minnesota. Journal of Quaternary Research 3:329-382.Google Scholar
  31. Hesseln, H., D. B. Rideout, and P. N. Omi. 1998. Using catastrophe theory to model wildfire behavior and control. Canadian Journal of Forest Research 28:852-862.CrossRefGoogle Scholar
  32. Holling, C. S. 1973. Resilience and stability of ecological systems. Annual Review of Ecology and Systematics 4:1-23.CrossRefGoogle Scholar
  33. Holling, C. S., and L. H. Gunderson. 2002. Resilience and adaptive cycles. In: Panarchy: Understanding transformations in human and natural systems, L. H. Gunderson and C. S. Holling (eds. ). Island Press, Washington, D. C.Google Scholar
  34. Irland, L. C. 1980. Pulpwood, pesticides, and people: Controlling spruce budworm in northeastern North America. Environmental Management 4(5):381-389.CrossRefGoogle Scholar
  35. Kermack, W. O., and A. G. McKendrick. 1927. Contributions to the mathematical theory of epidemics. Proceedings of the Royal Society 115A:700-721.Google Scholar
  36. Kokotovic, P. V. 1984. Applications of singular perturbation techniques to control problems. SIAM Review 26(4):501-550.CrossRefGoogle Scholar
  37. Landres, P. B., P. Morgan, and F. J. Swanson. 1999. Overview of the use of natural vari- ability concepts in managing ecological systems. Ecological Applications 9:1179-1188.Google Scholar
  38. Leung, B., D. Finnoff, J. F. Shogren, and D. Lodge. 2005. Managing invasive species: Rules of thumb for rapid assessment. Ecological Economics 55:24-36.CrossRefGoogle Scholar
  39. Leung, B., D. M. Lodge, D. Finnoff, J. F. Shogren, M. A. Lewis, and G. Lamberti. 2002. An ounce of prevention or a pound of cure: Bioeconomic risk analysis of invasive species. Proceedings of the Royal Society of London, B 269:2407-2413.CrossRefGoogle Scholar
  40. Levin, S. A. 2002. Complex adaptive systems: Exploring the known, the unknown and the unknowable. Bulletin of the American Mathematical Society 40(1):3-19.CrossRefGoogle Scholar
  41. Liebhold, A., W. D. Koenig, and O. N. Bjørnstad. 2004. Spatial synchrony in population dynamics. Annual Review of Ecology, Evolution, and Systematics 35:467-490.CrossRefGoogle Scholar
  42. Logan, J. A., and J. A. Powell. 2001. Ghost forests, global warming, and the mountain pine beetle (Coleoptera: Scolytidae). American Entomologist 47(3):160-172.Google Scholar
  43. Logan, J. A., J. Régnière, and J. A. Powell. 2003. Assessing the impact of global warming on forest pest dynamics. Frontiers of Ecology and the Environment 1(3):130-137.Google Scholar
  44. Ludwig, D., D. D. Jones, and C. S. Holling. 1978. Qualitative analysis of insect outbreak systems: The spruce budworm and forest. The Journal of Animal Ecology 47:315-332.CrossRefGoogle Scholar
  45. Malamud, B. D., J. D. A. Millington, and G. L. W. Perry. 2005. Characterizing wild- fire regimes in the United States. Proceedings of the National Academy of Science 102 (13):4694-4699.CrossRefGoogle Scholar
  46. Malamud, B. D., G. Morein, and D. L. Turcotte. 1998. Forest fires: An example of selforganized critical behavior. Science 281:1840-1842.CrossRefPubMedGoogle Scholar
  47. Mäler, K. -G., A. Xepapadeas, and A. de Zeeuw. 2003. The economics of shallow lakes. Environmental and Resource Economics 26:603-624.CrossRefGoogle Scholar
  48. May, R. M. 1977. Thresholds and breakpoints in ecosystems with a multiplicity of stable states. Nature 269:471-477.CrossRefGoogle Scholar
  49. Mercer, D. E., J. P. Prestemon, D. T. Butry, and J. M. Pye. 2007. Evaluating alternative prescribed burning policies to reduce net economic damages from wildfire. American Journal of Agricultural Economics 89(1):63-77.CrossRefGoogle Scholar
  50. Olson, L. J., and S. Roy. 2002. The economics of controlling a stochastic biological invasion. American Journal of Agricultural Economics 84(5):1311-1316.CrossRefGoogle Scholar
  51. Pascual, M., and F. Guichard. 2005. Criticality and disturbance in spatial ecological systems. TRENDS in Ecology and Evolution 20(2):88-95.CrossRefPubMedGoogle Scholar
  52. Peltonen, M., A. M. Liebhold, O. N. Bjørnstad, and D. W. Williams. 2002. Spatial synchrony in forest insect outbreaks: Roles of regional stochasticity and dispersal. Ecology 83:3120-3129.CrossRefGoogle Scholar
  53. Perrings, C. 2005. Mitigation and adaptation strategies for the control of biological invasions. Ecological Economics 52:315-325.Google Scholar
  54. Pielke, R. A., Jr., and R. T. Conant. 2003. Best practices in prediction for decision-making: Lessons from the atmospheric and earth sciences. Ecology 84(6):1351-1358.CrossRefGoogle Scholar
  55. Prestemon, J. P., J. M. Pye, D. T. Butry, T. P. Holmes, and D. E. Mercer. 2002. Understanding broadscale wildfire risk in a human-dominated landscape. Forest Science 48:685-693.Google Scholar
  56. Ricotta, C., M. Arianoutsou, R. Díaz-Delgado, B. Duguy, F. Lloret, E. Maroudi, S. Mazzoleni, J. M. Moreno, S. Rambal, R. Vallejo, and A. Vázquez. 2001. Self-organized criticality of wildfires ecologically revisited. Ecological Modelling 14:307-311.CrossRefGoogle Scholar
  57. Ricotta, C., G. Avena, and M. Marchetti. 1999. The flaming sandpile: Self-organized criticality and wildfires. Ecological Modelling 119:73-77.CrossRefGoogle Scholar
  58. Rinaldi, S., and S. Muratori. 1992. Limit cycles in slow-fast forest-pest models. Theoretical Population Biology 41:26-43.CrossRefGoogle Scholar
  59. Rinaldi, S., and M. Scheffer. 2000. Geometric analysis of ecological models with slow and fast processes. Ecology 3:507-521.Google Scholar
  60. Romme, W. H. 1982. Fire and landscape diversity in subalpine forests of Yellowstone National Park. Ecological Monographs 52:199-221.CrossRefGoogle Scholar
  61. Samuelson, P. A. 1947. Foundations of economic analysis. Harvard University Press, Cambridge, MA.Google Scholar
  62. Shah, M. A., and U. Sharma. 2001. Management and maintenance of forestry: A catastrophic stochastic analysis. Natural Hazards 23:49-64.CrossRefGoogle Scholar
  63. Sharov, A. A., and A. M. Liebhold. 1998. Bioeconomics of managing the spread of exotic pest species with barrier zones. Ecological Applications 8:833-845.Google Scholar
  64. Shaw, M. W. 1994. Modeling stochastic processes in plant pathology. Annual Review of Phytopathology 32:523-544.CrossRefPubMedGoogle Scholar
  65. Simon, H. A., and A. Ando. 1961. Aggregation of variables in dynamic systems. Econometrica 29(2):111-138.CrossRefGoogle Scholar
  66. Smith, M. D. 2006. Bioeconometrics: Empirical modeling of bioeconomic systems. Working Paper, Nicholas School of the Environment and Earth Sciences, Duke University, Durham, NC.Google Scholar
  67. Song, W., F. Weicheng, W. Binghong, and Z. Jianjun. 2001. Self-organized criticality of forest fire in China. Ecological Modelling 145:61-68.CrossRefGoogle Scholar
  68. Stedinger, J. R. 1984. A spruce budworm-forest model and its implications for suppression programs. Forest Science 30(3):597-615.Google Scholar
  69. Stephens, S. L., and L. W. Ruth. 2005. Federal forest-fire policy in the United States. Ecological Applications 15(2):532-542.CrossRefGoogle Scholar
  70. Swallow, S. K., P. J. Parks, and D. N. Wear. 1990. Policy-relevant nonconvexities in the production of multiple forest benefits. Journal of Environmental Economics and Management 19:264-280.CrossRefGoogle Scholar
  71. Swetnam, T. W. 1993. Fire history and climate change in giant sequoia groves. Science 262:885-889.CrossRefPubMedGoogle Scholar
  72. Swinton, J., and C. A. Gilligan. 1996. Dutch elm disease and the future of the elm in the U. K. : A quantitative analysis. Philosophical Transactions: Biological Sciences 351 (1340):605-615.CrossRefGoogle Scholar
  73. Tu, P. N. V. 1994. Dynamical systems—An introduction with applications in economics and biology (second edition). Springer-Verlag, Berlin.Google Scholar
  74. Turchin, P. 2003. Complex population dynamics: A theoretical/empirical synthesis. Princeton University Press, Princeton, NJ.Google Scholar
  75. Turchin, P., and A. D. Taylor. 1992. Complex dynamics in ecological time series. Ecology 73(1):289-305.CrossRefGoogle Scholar
  76. Ward, P. C., A. G. Tithecott, and B. M. Wotton. 2001. Reply- A re-examination of the effects of fire suppression in the boreal forest. Canadian Journal of Forest Research 31:1467-1480.CrossRefGoogle Scholar
  77. Westerling, A. L., H. G. Hildago, D. R. Cayan, and T. W. Swetnam. 2006. Warming and earlier spring increases Western United States forest wildfire activity. Science 313:94-943.CrossRefGoogle Scholar
  78. Worster, D. 1994. Nature’s economy—A history of ecological ideas (Second edition). Cambridge University Press, Cambridge, UK.Google Scholar
  79. Wu, J., and O. L. Loucks. 1995. From balance of nature to hierarchical patch dynamics: A paradigm shift in ecology. The Quarterly Review of Biology 70:439-466.CrossRefGoogle Scholar
  80. Zhang, Y. -H., M. J. Wooster, O. Tutubalina, and G. L. W. Perry. Monthly burned area and forest fire carbon emission estimates for the Russian Federation from SPOT VGT. Remote Sensing of Environment 87:1-15.Google Scholar

Copyright information

© Springer Science + Business Media B.V. 2008

Authors and Affiliations

  • Thomas P. Holmes
    • 1
  • Robert J. HuggettJr.
    • 1
  • John M. Pye
    • 1
  1. 1.Southern Research StationUnited States Forest ServiceResearch Triangle Park

Personalised recommendations