Beyond the Standard Model: Will it be the Theory of Everything?

  • Yuval Ne'eman
Part of the Fundamental Theories of Physics book series (FTPH, volume 149)

What is the lesson? I have pointed out elsewhere [2]–[4] to the role of research in providing for the introduction of a random element in the evolution of human societies. Any evolutionary process involves: (1) a mechanism producing random ‘mutations’ and (2) a process of selection by positive innovation, preserved through some stability criteria. A truly ‘important’ discovery is one which could not be predicted by extrapolation from the previous stage. Moreover, the evolution of science itself similarly benefits from serendipity[5, 6], namely unexpected results popping up in a research program, e.g. Fleming's discovery of antibiotics, after finding the bacteria dead in a Petrie dish whose cover was not well closed. When deciding on a research proposal, it is not sufficient to judge its merits by the expected results as described by the investigator. Other important criteria should include the extent to which the project might explore virgin sectors of phenomena – and the researcher's previous performance, especially in noticing new openings (had he or she been faced with Fleming's dead bacteria, would the only conclusion have consisted in a decision to tighten the lid next time?) A further illustration of the role of the unexpected is that the route to India via the Pacific is indeed utilized nowadays because it is the shortest – for travellers from California, for instance. Thus, Columbus's trip and serendipitous discovery has served – after a few hundred years, to create a market for the product he was advertising in his proposal – trips to India. In any case, although the Salamanca referees were correct, Columbus's connection at the court did manage to ensure that his project be funded – and America discovered.


Quantum Gravity Heterotic String Duality Transformation Electroweak Theory Copenhagen Interpretation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Plutarch, Quaest. Plat.Google Scholar
  2. 2.
    Y. Ne’eman, Acta Sci. Venezolana 31, 1–3 (1980).Google Scholar
  3. 3.
    Y. Ne’eman, Metab. Pediat and Syst. Ophthalmology, 11, 12 (1988).Google Scholar
  4. 4.
    Y. Ne’eman, in Soft Order in Physical Systems, (Proc. Les Houches, 1993), (eds.) R. Bruinsma Y. Rabin, Plenum Press, New York (1994), pp. 223–228.Google Scholar
  5. 5.
    Y. Ne’eman, Proc. Kon. Ned. Akad. v. Wetensch. 96, 433 (1993).Google Scholar
  6. 6.
    A. Kantorovich and Y. Ne’eman, Stud. Hist. Phil. Sci. 20, 505 (1989).CrossRefGoogle Scholar
  7. 7.
    H. Weyl, The Theory of Groups and Quantum Mechanics, 2nd (revised) German edition (1930), English translation (Dover, Inc, London).Google Scholar
  8. 8.
    Y. Ne’eman, Nucl. Phys. 26, 222 (1961).CrossRefMathSciNetGoogle Scholar
  9. 9.
    M. Gell-Mann and Y. Ne’eman, The Eightfold Way, W.A. Benjamin Publishing Co., Reading, MA (1964).Google Scholar
  10. 10.
    Y. Ne’eman, Algebraic Theory of Particle Physics, W.A. Benjamin Publishing Co., Reading, MA (1967).MATHGoogle Scholar
  11. 11.
    H. Weyl., Z Phys. 56, 330 (1929).CrossRefADSGoogle Scholar
  12. 12.
    C.N. Yang and R.L. Mills, Phys. Rev. 95, 631 (1954); 96, 191 (1954).MathSciNetGoogle Scholar
  13. 13.
    C. Becchi, A. Rouet and R. Stora, Ann. Phys. 98, 287 (1976).CrossRefADSMathSciNetGoogle Scholar
  14. 14.
    J. Thierry-Mieg, J. Math. Phys. 21, 2834 (1980).CrossRefADSMathSciNetGoogle Scholar
  15. 15.
    G. ’t Hooft, Nucl. Phys. B, 35, 167 (1971).CrossRefADSGoogle Scholar
  16. 16.
    S. Glashow, Nucl. Phys. 22, 579 (1961).CrossRefGoogle Scholar
  17. 17.
    S. Weinberg, Phys. Rev. Lett. 19, 1264 (1967).CrossRefADSGoogle Scholar
  18. 18.
    A. Salam, in Elementary Particle Theory, Svartholm (ed.), N., almquist Publications, almquist Publications (1968).Google Scholar
  19. 19.
    D.J. Gross and F. Wilczek, Phys. Rev. Lett. 30, 1323 (1973).CrossRefADSGoogle Scholar
  20. 20.
    H.D. Politzer, Phys. Rev. Lett. 30, 1346 (1973).CrossRefADSGoogle Scholar
  21. 21.
    S. Weinberg, Phys. Rev. Lett. 31, 494 (1973).CrossRefADSGoogle Scholar
  22. 22.
    H. Fritzsch and G. Gell-Mann., in Proc. XVIth I.C.H.E.P. Chicago, IL, 2, 135 (1972).Google Scholar
  23. 23.
    Y. Ne’eman, Phys. Rev. B 134, 1355 (1964).CrossRefGoogle Scholar
  24. 24.
    N. Cabibo, Phys. Rev. Lett. 10, 531 (1963).CrossRefADSGoogle Scholar
  25. 25.
    M. Kobayashi and K. Maskawa, Prog. Theo. Phys, 49, 282 (1972).CrossRefGoogle Scholar
  26. 26.
    R. Haag, J.T. Lopuszanski and M. Sohnius, Nucl. Phys. B 88, 257 (1975).CrossRefADSMathSciNetGoogle Scholar
  27. 27.
    Y. Ne’eman, Aspen Inst. lecture, June (1976), unpublished.Google Scholar
  28. 28.
    E. Cremmer and B. Julia, Nucl. Phys. B 159, 141 (1979).CrossRefADSMathSciNetGoogle Scholar
  29. 29.
    E. Cremmer and B. Julia and J. Scherk, Phys. Lett. B 76, 409 (1978).CrossRefADSGoogle Scholar
  30. 30.
    Y. Ne’eman, in Proc. Second Mexican School of Grav. and Math. Phys. Tlaxcala (1996), to be published.Google Scholar
  31. 31.
    D. Stelle, Phys. Rev. D, 16, 953 (1977).CrossRefADSMathSciNetGoogle Scholar
  32. 32.
    E.T. Tomboulis, Phys. Lett. B 389, 225 (1996).CrossRefADSMathSciNetGoogle Scholar
  33. 33.
    Y. Ne’eman and Dj Sijacki, Phys. Lett. B 200, 489 (1988).CrossRefADSMathSciNetGoogle Scholar
  34. 34.
    C.Y. Lee and Y. Ne’eman, Phys. Lett. B 242, 59 (1990).CrossRefADSMathSciNetGoogle Scholar
  35. 35.
    C.Y. Lee., Class. Quantum Grav. 9, 2001 (1992).CrossRefADSGoogle Scholar
  36. 36.
    G. Stephenson, Nuo. Cim. 9, 263 (1958).MATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    C.W. Kilmister and D.J. Newman, Proc. Cam. Phil. Soc. 57, 851 (1961).MATHCrossRefMathSciNetGoogle Scholar
  38. 38.
    C.N. Yang, Phys. Rev. Lett. 33, 445 (1974).CrossRefADSMathSciNetGoogle Scholar
  39. 39.
    A. Ashtekar, Phys. Rev. Lett. 57, 3344 (1986).CrossRefMathSciNetGoogle Scholar
  40. 40.
    C. Rovelli and L. Smolin, Phys. Rev. Lett. 61, 1155 (1988).CrossRefADSMathSciNetGoogle Scholar
  41. 41.
    C. Rovelli and L. Smolin, Nucl. Phys. B 442, 593 (1995).MATHCrossRefADSMathSciNetGoogle Scholar
  42. 42.
    Y. Ne’eman, Phys. Lett. A 186, 5 (1994).CrossRefADSGoogle Scholar
  43. 43.
    M.B. Green, J.H. Schwarz and E. Witten, Superstring Theory, Cambridge University Press, Cambridge, U.K. (1987).MATHGoogle Scholar
  44. 44.
    J.H. Schwarz (ed)., Superstrings: The First Fifteen Years of Superstring Theory, World Scientific Publications, Singapore (1958) 2 Vols.Google Scholar
  45. 45.
    E. Witten, Physics Today, April 24–30 (1996).Google Scholar
  46. 46.
    M. Duff, Class. Quantum Grav. 5, 189 (1988); A. Strominger, Nucl. Phys., B 343, 167 (1990).CrossRefADSMathSciNetGoogle Scholar
  47. 47.
    E. Bergshoeff, E. Sezgin and P.K. Townsend, Ann. Phys. 185, 330 (1988); P.K. Townsend, Phys. Lett. B 350, 184 (1995).CrossRefADSMathSciNetGoogle Scholar
  48. 48.
    A. Connes, Publ. Math IHES, 62, 257 (1985).MathSciNetGoogle Scholar
  49. 49.
    J. Madore, Class. Quantum Grav. 9, 69 (1992).MATHCrossRefADSMathSciNetGoogle Scholar
  50. 50.
    D. Quillen, Topology, 24, 89 (1985).MATHMathSciNetGoogle Scholar
  51. 51.
    A. Connes and J. Lott., Nucl. Phys. (Proc. Suppl.) B 18, 29 (1990).CrossRefADSMathSciNetGoogle Scholar
  52. 52.
    R. Coquereaux, R. Haussling, N.A. Papadopoulos and F. Scheck, Int. J. Mod. Phys. A 7, 2809 (1992).CrossRefADSMathSciNetGoogle Scholar
  53. 53.
    S. Sternberg and Y. Ne’eman, Proc. Nat. Acad. Sci. USA, 87, 7875 (1990).MATHCrossRefADSMathSciNetGoogle Scholar
  54. 54.
    Y. Ne’eman, Phys. Lett. B 81, 190 (1979).CrossRefADSMathSciNetGoogle Scholar
  55. 55.
    D.B. Fairlie, Phys. Lett. B 82, 97 (1979).CrossRefADSGoogle Scholar
  56. 56.
    Y. Ne’eman, to be published in Proc. 7th Marcel Grossmann Symp. Jerusalem (1997).Google Scholar
  57. 57.
    A. Connes, Gravity coupled to matter etc., hep-th/9603053.Google Scholar
  58. 58.
    E. Atzmon, The associated metric for a particle in a quantum energy level, to appear in Found. Phy. (1998).Google Scholar

Copyright information

© Springer Science + Business Media B.V 2008

Authors and Affiliations

  • Yuval Ne'eman
    • 1
  1. 1.Tel-Aviv UniversityIsrael

Personalised recommendations