The Nature of Discovery in Physics

  • Douglas D. Osheroff
Part of the Fundamental Theories of Physics book series (FTPH, volume 149)

By their very nature, those discoveries which most change the way we perceive our physical universe are difficult to anticipate. How then, are such discoveries made, and what experimental approaches are most likely to lead to discoveries? In this article I will describe four experiments in which I have participated that have yielded unexpected new physics, and attempt to explain how they came about.


Nobel Prize Nuclear Spin Weak Localization Bell Laboratory Melting Pressure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Goodstein and J. Goodstein, “Richard Feynman and the History of Superconductivity” in History of Original Ideas and Basic Discoveries in Particle Physics, ed. H.B. Newman and T. Ypsilantis, Plenum, N.Y. (1996), pp. 773–779.Google Scholar
  2. 2.
    J. Bardeen, L.N. Cooper, and J.R. Schrieffer, “Theory of Superconductivity”, Phys. Rev. 108, 1175–1204 (1957).CrossRefADSMathSciNetMATHGoogle Scholar
  3. 3.
    R.W. Wilson, The Cosmic Microwave Background Radiation Les Prix Nobel 1978, eds. Siegbahn, K., et al., Almqvist & Wiksell, Stockholm, (1979) pp. 113–133.Google Scholar
  4. 4.
    G. Gamow, “The Evolution of the Universe”, Nature 162, 680–682 (1948).CrossRefADSGoogle Scholar
  5. 5.
    D. Wilkinson, private communication.Google Scholar
  6. 6.
    I. Pomeranchuk, “On the theory of liquid 3He”, Zh. Eksperim. i Theor. Fiz. 20, 919–926 (1950).Google Scholar
  7. 7.
    Y.D. Anufriyev, “Use of the Pomeranchuk effect to obtain infralow temperature”, JETP Lett. 1, 155–157 (1965).ADSGoogle Scholar
  8. 8.
    W.E. Keller, Helium-3 and Helium-4, Plenum, N.Y. (1969).Google Scholar
  9. 9.
    R.T. Johnson, R.E. Rapp and J.C. Wheatley, “Effect of a magnetic field on the melting curve of 3He”, J. Low Temp. Phys. 6, 445–453 (1971).CrossRefADSGoogle Scholar
  10. 10.
    D.D. Osheroff, Superfluidity in 3 He: Discovery and Understanding, Les Prix Nobel 1996, eds. T. Frngsmyr and Brigitta Lundeberg, Norstedts Tryckeri AB, Stockholm (1997) pp. 103–133. Also: Rev. Mod. Phys. 69, 667–681 (1997), and available from World Scientific Publishers (Singapore) on CD ROM.Google Scholar
  11. 11.
    D.D. Osheroff, “Nuclear magnetic order in Solid 3He”, J. Low Temp. Phys. 87, 297–342 (1992).CrossRefADSGoogle Scholar
  12. 12.
    N. Bernardes and H. Primakoff, “Theory of Solid 3He”, Phys. Rev. Lett. 2, 290–292 (1960).CrossRefADSGoogle Scholar
  13. 13.
    J.R. Sites, D.D. Osheroff, R.C. Richardson and D.M. Lee, “Nuclear magnetic susceptibility of solid 3He cooled by compression from the liquid phase”, Phys. Rev. Letts. 23, 836–839 (1969).CrossRefADSGoogle Scholar
  14. 14.
    W.P. Halperin, C.N. Archie, F.B. Rasmussen, R.A. Buhrman and R.C. Richardson, “Observation of nuclear magnetic order in solid 3He”, Phys. Rev. Lett. 32, 927–930 (1974).CrossRefADSGoogle Scholar
  15. 15.
    M. Roger, J.M. Delrieu and A. Landesman, “Nuclear spin ordering with four spin exchange in solid bcc 3He”, Phys. Lett. A 62, 449–452 (1977).CrossRefADSGoogle Scholar
  16. 16.
    D.D. Osheroff, M.C. Cross and D.S. Fisher, “Nuclear Antiferromagnetic Resonance in Solid 3He”, Phys. Rev. Lett. 44, 792–795 (1980).CrossRefADSGoogle Scholar
  17. 17.
    A. Benoit, J. Bossy, J. Flouquet and J. Schweizer, Magnetic diffraction in solid 3He”, J. de Physique Letters, 46, L923–L927 (1985).CrossRefGoogle Scholar
  18. 18.
    E.D. Adams, E.A. Schubert, G.E. Haas, and D.M. Bakalyar, “NMR in magnetically ordered solid 3He”, Phys. Rev. Lett. 44, 789–792 (1980).CrossRefADSGoogle Scholar
  19. 19.
    D. Thouless, “Maximum metallic resistance in thin wires”, Phys. Rev. Lett. 39, 1167–1170 (1977).CrossRefADSGoogle Scholar
  20. 20.
    P.W. Anderson, E. Abrahams, and T.V. Ramakrishnan, “Possible explanation of nonlinear conductivity in thin-film metal wires”, Phys. Rev. Lett. 43, 717–720 (1979) and G.R. Dolan and D.D. Osheroff, “Non-metallic conduction in thin metal films at low temperatures”, Phys. Rev. Lett. 43, 721–724 (1979).ADSGoogle Scholar
  21. 21.
    R.C. Zeller and R.O. Pohl, “Thermal conductivity and specific heat of non-crystalline solids”, Phys. Rev. B 4, 2029–2041 (1971).CrossRefADSGoogle Scholar
  22. 22.
    Tunnelling Systems in Solids, ed. P. Esquinazi, Springer (1998).Google Scholar

Copyright information

© Springer Science + Business Media B.V 2008

Authors and Affiliations

  • Douglas D. Osheroff
    • 1
  1. 1.Department of PhysicsStanford UniversityStanfordUSA

Personalised recommendations