• G.S. KINO
  • D.P. FROMM
Part of the Springer Series in Optical Sciences book series (SSOS, volume 131)


When light of wavelength λ is focused into a medium of refractive index n, the minimum spot size due to diffraction is on the order of λ/(2n). For example, at a wavelength of 405 nm, at the edge of the visible band, diffraction limits the minimum spot size to be greater than 100 nm. Near-field techniques based on the idea that light can be passed through a tapered metal-covered optical fiber, which acts as a cut-off waveguidewhen the guide diameter is less than λ/(2n), have made it possible to obtain spot sizes on the order of 50 nm with power transmission on the order of 10−3 to 10−6 of the incident power. Similarly, passing light through a small pinhole on the order of 50 nm diameter leads to a field intensity at the end of the guide which is greatly reduced from that of the incident field.


Full Width Half Maximum Resonant Wavelength Intensity Enhancement Bowtie Antenna Minimum Spot Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Betzig, J.K. Trautman, T.D. Harris, J.S. Weiner, R.L. Kostelak: Breaking the diffraction barrier: optical microscopy on a nanometric scale, Science 251, 146 (1991).CrossRefGoogle Scholar
  2. 2.
    F. Zenhausern, Y. Martin, H.K. Wickramasinghe: Scanning interferometric apertureless microscopy: optical imaging at 10 angstrom resolution, Science 269, 1083 (1995).CrossRefGoogle Scholar
  3. 3.
    J.L. Bohn, D.J. Nesbitt, A. Gallagher: Field enhancement in apertureless near-field scanning optical microscopy, J. Opt. Soc. Am. A. 18, 2998–3006 (2001).CrossRefGoogle Scholar
  4. 4.
    L. Novotny, E.J. Sanchez, X.S. Xie: Near-field optical imaging using metal tips illuminated by higher-order Hermite-Gaussian beams, Ultramicroscopy 71, 21 (1998).CrossRefGoogle Scholar
  5. 5.
    A. Hartschuch, E.J. Sanchez, X.S. Xie, L.Novotny: High-resolution near-field Raman microscopy of single-walled carbon nanotubes, Phys. Rev. Lett. 90, 095503 (2003).CrossRefGoogle Scholar
  6. 6.
    S.A. Maier, P.G. Kik, H.A. Atwater: Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss, Appl. Phys. Lett. 81, 1714 (2002).CrossRefGoogle Scholar
  7. 7.
    K.B. Crozier, A. Sundaramurthy, G.S. Kino, C.F. Quate: Optical antennas: resonators for local field enhancement, J. Appl. Phys. 94, 4632 (2003).CrossRefGoogle Scholar
  8. 8.
    D.A. Genov, A.K. Sarychev, V.M. Shalaev, A. Wei: Resonant field enhancements from metal nanoparticle arrays, Nano Lett. 4, 0343710 (2004).CrossRefGoogle Scholar
  9. 9.
    E. Hao, G.C. Schatz: Electromagnetic fields around silver nanoparticles and dimers, J. Chem. Phys. 120, 357 (2004).CrossRefGoogle Scholar
  10. 10.
    W. Rechberger, A. Hohenau, A. Leitner, J.R. Krenn, B. Lamprecht, F.R. Ausenegg: Optical properties of two interacting gold nanoparticles, Opt. Commun. 220, 137 (2003).CrossRefGoogle Scholar
  11. 11.
    R.D. Grober, R.J. Schoelkopf, D.E. Prober: Optical antenna: Towards a unity efficiency near-field optical probe, Appl. Phys. Lett. 70, 1354 (1997).CrossRefGoogle Scholar
  12. 12.
    D.P. Fromm, A. Sundaramurthy, P.J. Schuck, G. Kino, W.E. Moerner: Gap-dependent optical coupling of single “Bowtie” nanoantennas resonant in the visible, Nano Lett. 4, 957 (2004).CrossRefGoogle Scholar
  13. 13.
    J.G. Goodberlet, J.T. Hastings, H.I. Smith: Performance of the Raith 150 electron-beam lithography system, J. Vac. Sci. Technol. B 19, 2499 (2001).CrossRefGoogle Scholar
  14. 14.
    TEMPEST 6.0, Electronics Research Laboratory, University of California, Berkeley, California.Google Scholar
  15. 15.
    E.D. Palik: Handbook of Optical Constants (Academic Press, Orlando, Florida, 1985).Google Scholar
  16. 16.
    A. Sundaramurthy, P.J. Schuck, D.P. Fromm, W.E. Moerner, G. Kino: Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles, Phys. Rev. B. 72, 165409 (2005).CrossRefGoogle Scholar
  17. 17.
    S. Ramo, J.R. Whinnery, T. Van Duzer Fields and Waves in Communication Electronics, 2nd edn (Wiley, New York, 1984), pp. 586–589.Google Scholar
  18. 18.
    C. K. Chen, A.R.B. de Castro, Y.R. Shen: Surface-Enhanced Second-Harmonic Generation, Phys. Rev. Lett. 46, 145 (1981).CrossRefGoogle Scholar
  19. 19.
    G.T. Boyd, Z.H. Yu, Y.R. Shen: Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces, Phys. Rev. B 33, 7923 (1986).CrossRefGoogle Scholar
  20. 20.
    M.R. Beversluis, A. Bouhelier, L. Novotny: Continuum generation from single gold nanostructures through near-field mediated intraband transitions, Phys. Rev. B 68, 115433 (2003).CrossRefGoogle Scholar
  21. 21.
    A. Bouhelier, M.R. Beversluis, L. Novotny: Characterization of nanoplasmonic structures by locally excited photoluminescence, Appl. Phys. Lett. 83, 5041 (2003).CrossRefGoogle Scholar
  22. 22.
    P.J. Schuck, D.P. Fromm, A. Sundaramurthy, G.S. Kino, W.E. Moerner: Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas, Phys. Rev. Lett. 94, 017402 (2005).CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • G.S. KINO
    • 1
    • 1
    • 1
  • D.P. FROMM
    • 1
    • 1
  1. 1.Stanford UniversityStanfordUSA

Personalised recommendations