• X. ZHANG
  • N. FANG
  • H. LEE
  • Z. LIU
  • C. SUN
  • Y. XIONG
Part of the Springer Series in Optical Sciences book series (SSOS, volume 131)


The diffraction limit has long been a fundamental barrier for optical imaging. The ability to improve the resolving power of optical systems has attracted considerable interest. This ever-growing interest is due to the enormous potential benefit it offers in diverse fields such as bio-imaging, data storage, and lithography. Significant efforts have been made to enhance optical resolution. As an earliest effort to improve the resolution, contact mask imaging was proposed and demonstrated. Immersion microscopy improves the resolution by increasing the refractive index of the surrounding medium; this method is limited by the availability of high index materials. Although scanning near-field optical microscopy (NSOM) provides subwavelength resolution, it does not project a whole image like a regular lens does. The optical information is collected by scanning a sharp tip in a point-by-point fashion near the surface which suffers from slow speed of serial scanning. It is often an “invasive” measurement that requires complicated post procedures for imaging reconstruction to remove the artifacts due to the tip-structure interaction. Recently, Pendry proposed an interesting “perfect lens theory” in which a left-handed material (LHM) is used to obtain super-resolution well below the diffraction limit.


Evanescent Wave Negative Refractive Index Silver Layer Optical Transfer Function Surface Plasmon Excitation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    U.C. Fischer, H.P. Zingsheim: Sub-microscopic pattern replication with visible-light, J. Vac. Sci. Technol. 19 (4), 881–885 (1981).CrossRefGoogle Scholar
  2. 2.
    H.I. Smith: Fabrication techniques for surface-acoustic-wave and thin-film optical devices, Proc. IEEE62(10), 1361–1387 (1974).CrossRefGoogle Scholar
  3. 3.
    J.B. Pendry: Negative refraction makes a perfect lens, Phys. Rev. Lett. 85(18), 3966–3969 (2000).CrossRefGoogle Scholar
  4. 4.
    V.G. Veselago: Electrodynamics of substances with simultaneously negative values of sigma and mu, Soviet Phys. Uspekhi-USSR 10(4), 509 (1968).CrossRefGoogle Scholar
  5. 5.
    J.B. Pendry, A.J. Holden, W.J. Stewart, I. Youngs: Extremely low frequency plasmons in metallic mesostructures, Phys. Rev. Lett. 76 (25), 4773–4776 (1996).CrossRefGoogle Scholar
  6. 6.
    J.B. Pendry, A.J. Holden, D.J. Robbins, W.J. Stewart: Magnetism from conductors and enhanced nonlinear phenomena, IEEE Trans. Microwave Theory Tech. 47(11), 2075–2084 (1999).CrossRefGoogle Scholar
  7. 7.
    R.A. Shelby, D.R. Smith, S. Schultz: Experimental verification of a negative index of refraction, Science 292(5514), 77–79 (2001).CrossRefGoogle Scholar
  8. 8.
    T.J. Yen, W.J. Padilla, N. Fang, D.C. Vier, D.R. Smith, J.B. Pendry, D.N. Basov, X. Zhang: Terahertz magnetic response from artificial materials, Science 303(5663), 1494–1496 (2004).CrossRefGoogle Scholar
  9. 9.
    S. Linden, C. Enkrich, M. Wegener, J.F. Zhou, T. Koschny, C.M. Soukoulis: Magnetic response of metamaterials at 100 terahertz, Science 306(5700), 1351–1353 (2004).CrossRefGoogle Scholar
  10. 10.
    D.R. Smith, J.B. Pendry, M.C.K. Wiltshire: Metamaterials and negative refractive index, Science 305(5685), 788–792 (2004).CrossRefGoogle Scholar
  11. 11.
    S. Anantha Ramakrishna: Physics of negative refractive index materials, Rep. Prog. Phys. 68(2), 449–521 (2005).CrossRefGoogle Scholar
  12. 12.
    A. Grbic, G.V. Eleftheriades: Overcoming the diffraction limit with a planar left-handed transmission-line lens, Phys. Rev. Lett. 92(11), 117403 (2004).CrossRefGoogle Scholar
  13. 13.
    P.V. Parimi, W.T. Lu, P. Vodo, S. Sridhar: Photonic crystals—Imaging by flat lens using negative refraction, Nature 426(4965), 404 (2003).CrossRefGoogle Scholar
  14. 14.
    H. Raether: Surface Plasmons (Springer, Berlin, 1988).Google Scholar
  15. 15.
    N. Fang, Z.W. Liu, T.J. Yen, X. Zhang, Regenerating evanescent waves from a silver superlens, Opt. Express 11(7), 682–687 (2003).CrossRefGoogle Scholar
  16. 16.
    N. Fang, X. Zhang: Imaging properties of a metamaterial superlens, Appl. Phys. Lett. 82(2), 161–163 (2003).CrossRefGoogle Scholar
  17. 17.
    Z. Liu, N. Fang, T.J. Yen, X. Zhang: Rapid growth of evanescent wave by a silver superlens, Appl. Phys. Lett. 83 (25) 5184–5186 (2003).CrossRefGoogle Scholar
  18. 18.
    N. Fang, Z. Liu, T.J. Yen, X. Zhang: Experimental study of transmission enhancement of evanescent waves through silver films assisted by surface plasmon excitation, Appl. Phys. A 80, 1315–1325 (2005).CrossRefGoogle Scholar
  19. 19.
    S. Heavens: Optical Properties of Thin Solid Films (Dover, Mineola, New York, 1991).Google Scholar
  20. 20.
    S. Hayashi, T. Kume, T. Amano, K. Yamamoto: A new method of surface plasmon excitation mediated by metallic nanoparticles, Jpn. J. Appl. Phys. 35 L331–L334 (1996).CrossRefGoogle Scholar
  21. 21.
    E. Kretschmann: Determination of surface-roughness of thin-films using measurement of angular-dependence of scattered light from surface plasma-waves, Opt. Commun. 10(4) 353–356 (1974).CrossRefGoogle Scholar
  22. 22.
    H.J. Simon, J.K. Guha: Directional surface-plasmon scattering from silver films, Opt. Commun. 18(3), 391–394 (1976).CrossRefGoogle Scholar
  23. 23.
    R.W. Alexander, G.S. Kovener, R.J: Bell: Dispersion curves for surface electromagnetic-waves with damping, Phys. Rev. Lett. 32(4), 154–157 (1974).CrossRefGoogle Scholar
  24. 24.
    P.B. Johnson, R.W. Christy: Optical-constants of noble-metals, Phys. Rev. B 6(12), 4370–4379 (1972)CrossRefGoogle Scholar
  25. 25.
    Oriel Instruments: The Book of Photon Tools, Chapt. 15, (2002).Google Scholar
  26. 26.
    N. Fang, H. Lee, C. Sun, X. Zhang: Sub-diffraction-limited optical imaging with a silver superlens, Science 308(5721), 534–537 (2005).CrossRefGoogle Scholar
  27. 27.
    H. Lee, Y. Xiong, N. Fang, W. Srituravanich, M. Ambati, C. Sun, X. Zhang: Realization of optical superlens imaging below the diffraction limit, New J. Phys. 7, 1–16 (2005)CrossRefGoogle Scholar
  28. 28.
    D.O.S. Melville, R.J, Blaikie, C.R. Wolf: Submicron imaging with a planar silver lens. Appl. Phys. Lett. 84(22), 4403–4405 (2004).CrossRefGoogle Scholar
  29. 29.
    D.R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S.A. Ramakrishna, J.B. Pendry: Limitations on subdiffraction imaging with a negative refractive index slab, Appl. Phys. Lett. 82(10), 1506–1508 (2003).CrossRefGoogle Scholar
  30. 30.
    L.E. Stillwagon, R.G. Larson: Leveling of thin-films over uneven substrates during spin coating, Phys. Fluids A-Fluid Dynam. 2(11), 1937–1944 (1990).CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • X. ZHANG
    • 1
    • 1
  • N. FANG
    • 1
  • H. LEE
    • 1
  • Z. LIU
    • 1
  • C. SUN
    • 1
  • Y. XIONG
    • 1
  1. 1.Nanoscale Science and Engineering Center, 5130 Etcheverry HallUniversity of CaliforniaBerkeleyUSA.

Personalised recommendations