Advertisement

SUBWAVELENGTH-SCALE PLASMON WAVEGUIDES

  • HARRY A. ATWATER
  • JENNIFER A. DIONNE
  • LUKE A. SWEATLOCK
Part of the Springer Series in Optical Sciences book series (SSOS, volume 131)

Abstract

By the mid-17th century, numerous scientists—notably including Hooke and Gallileo—had developed transparent ground lenses and applied them in the construction of compound optical microscopes. This development revolutionized the contemporary understanding of the natural world by, for example, enabling the imaging of blood cells and microbes. Ever since this now bygone era of fantastic development of optics principles and instrumentation, the size and performance of photonic devices has been largely limited by diffraction. Photonic devices of today are generally composed of dielectric materials with modest dielectric constants, and are much bigger than the smallest electronic devices (e.g., transistors in silicon integrated circuits) for this reason.

Keywords

Dispersion Relation Surface Enhance Raman Scattering Skin Depth Plasmon Mode Plasmon Waveguide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Raether: Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).Google Scholar
  2. 2.
    M. Quinten, A. Leitner, J.R. Krenn, F.R. Aussenegg: Electromagnetic energy transport via linear chains of silver nanoparticles, Opt. Lett. 23, 1331 (1998)Google Scholar
  3. 3.
    M.L. Brongersma, J.W. Hartman, H.A. Atwater: Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit, Phys. Rev. B 62, R16356 (2000).CrossRefGoogle Scholar
  4. 4.
    B. Lamprecht, G. Schider, R.T. Lechner, H. Ditlbacher, J.R. Krenn, A. Leitner, F.R. Aussenegg: Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance, Phys. Rev. Lett. 84, 4721(2000).CrossRefGoogle Scholar
  5. 5.
    S.A. Maier, M.L. Brongersma, P.G. Kik, S. Meltzer, A.A.G. Requicha, H.A. Atwater: Plasmonics—A route to nanoscale optical devices, Adv. Mater. 13, 1501 (2001).CrossRefGoogle Scholar
  6. 6.
    G. Mie: Articles on the optical characteristics of turbid tubes, especially colloidal metal solutions, Ann. Phys. 25, 377 (1908).CrossRefGoogle Scholar
  7. 7.
    U. Kreibig, M. Vollmer: Optical Properties of Metal Clusters (Springer-Verlag, Berlin, 1994).Google Scholar
  8. 8.
    C. Bohren, D. Huffman: Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).Google Scholar
  9. 9.
    S. Linden, J. Kuhl, H. Giessen: Controlling the interaction between light and gold nanoparticles: Selective suppression of extinction, Phys. Rev. Lett. 86, 4688 (2001)CrossRefGoogle Scholar
  10. 10.
    J.R. Krenn, A. Dereux, J.C. Weeber, E. Bourillot, Y. Lacroute, J.P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F.R. Aussenegg, C. Girard: Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles, Phys. Rev. Lett. 82, 2590 (1999).CrossRefGoogle Scholar
  11. 11.
    S.A. Maier, M.L. Brongersma, P.G. Kik, H.A. Atwater: Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy, Phys. Rev. B 65, 193408 (2002).CrossRefGoogle Scholar
  12. 12.
    S.A. Maier, P.G. Kik, H.A. Atwater: Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss, Appl. Phys. Lett. 81, 1714 (2002)CrossRefGoogle Scholar
  13. 13.
    M.L. Brongersma, J.W. Hartman, and H.H. Atwater. Plasmonics: electromagnetic energy transfer and switching in nanoparticle chain-arrays below the diffraction limit. in Molecular Electronics. Symposium, 29 Nov.–2 Dec. 1999, Boston, MA, USA. 1999: Warrendale, PA, USA : Mater. Res. Soc, 2001, This reference contains the first occurrence of the word “Plasmonics” in the title, subject, or abstract in the Inspec database.Google Scholar
  14. 14.
    S.A. Maier, P.G. Kik, H.A. Atwater: Optical pulse propagation in metal nanoparticle chain waveguides, Phys. Rev. B 67, 205402 (2003)CrossRefGoogle Scholar
  15. 15.
    D.R. Smith, N. Kroll: Negative refractive index in left-handed materials, Phys. Rev. Lett. 85, 2933 (2000)CrossRefGoogle Scholar
  16. 16.
    J.B. Pendry: Negative refraction makes a perfect lens, Phys. Rev. Lett. 85, 3966 (2000)CrossRefGoogle Scholar
  17. 17.
    S.A. Maier, P.G. Kik, H.A. Atwater, S. Meltzer, E. Harel, B.E. Koel, A.A.G. Requicha: Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides, Nat. Mater. 2, 229 (2003)CrossRefGoogle Scholar
  18. 18.
    F.J. García-Vidal, J.B. Pendry: Collective theory for surface enhanced Raman scattering, Phys. Rev. Lett. 77, 1163 (1996)CrossRefGoogle Scholar
  19. 19.
    H. Xu, J. Aizpurua, M. Käll, P. Apell: Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering, Phys. Rev. E 62, 4318 (2000).CrossRefGoogle Scholar
  20. 20.
    A.D. McFarland, R.P. Van Duyne: Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity, Nano Lett. 3, 1057 (2003)CrossRefGoogle Scholar
  21. 21.
    D.A. Genov, A.K. Sarychev, V.M. Shalaev, A. Wei: Resonant field enhancements from metal nanoparticle arrays, Nano Lett. 4, 153 (2004).CrossRefGoogle Scholar
  22. 22.
    Hache, D Ricard, C. Flytzanis: Optical nonlinearities of small metal particles: surface-mediated resonance and quantum size effects, J. Opt. Soc. Am. B 3, 1647 (1986)CrossRefGoogle Scholar
  23. 23.
    Y. Hamanaka, K. Fukata, A. Nakamura, L.M. Liz-Marzán, P. Mulvaney: Enhancement of third-order nonlinear optical susceptibilities in silica-capped Au nanoparticle films with very high concentrations, Appl. Phys. Lett 84, 4938 (2004)CrossRefGoogle Scholar
  24. 24.
    R.J. Gehr, R.W. Boyd: Optical properties of nanostructured optical materials, Chem. Mater. 8, 1807 (1996)CrossRefGoogle Scholar
  25. 25.
    Y. Shen, P.N. Prasad: Nanophotonics: a new multidisciplinary frontier, Appl. Phys. B 74, 641 (2002)CrossRefGoogle Scholar
  26. 26.
    D. Prot, D.B. Stout, J. Lafait, N. Pinçon, B. Palpant, S. Debrus: Local electric field enhancements and large third-order optical nonlinearity in nanocomposite materials, J. Opt. A 4, S99 (2002).Google Scholar
  27. 27.
    J.J. Penninkhof, A. Polman, L.A. Sweatlock, S.A. Maier, H.A. Atwater, A.M. Vredenberg, B.J. Kooi: Mega-electron-volt ion beam induced anisotropic plasmon resonance of silver nanocrystals in glass, Appl. Phys. Lett. 83, 4137 (2003)CrossRefGoogle Scholar
  28. 28.
    L.A. Sweatlock, S.A. Maier, H.A. Atwater, J.J. Penninkhof, A. Polman: Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles, Phys. Rev. B 71, 235408 (2005).CrossRefGoogle Scholar
  29. 29.
    D. Sarid: Long-range surface-plasma waves on very thin metal films, Phys. Rev. Lett. 47, 1927 (1981); A.E. Craig, G.A. Oldon, D. Sarid: Experimental observation of the long-range surface-plasmon polariton, Opt. Lett. 8, 380 (1983)CrossRefGoogle Scholar
  30. 30.
    J.J. Burque, G.I. Stegeman, T. Tamir: Excitation of surface-plasmon modes along thin metal-films, Phys. Rev. B 33, 5186 (1985); P. Berini: Plasmon-polariton modes guided by a metal film of finite width, Opt. Lett. 24, 15 (1999); P. Berini: Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of asymmetric structures, Phys. Rev. B 61, 15 (2000); P. Berini: Plasmon-polariton modes guided by a metal film of finite width bounded by different dielectrics, Opt. Express 7, 10 (2000); P. Berini: Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures, Phys. Rev. B 63, 12 (2001)CrossRefGoogle Scholar
  31. 31.
    J.A. Dionne, L.A. Sweatlock, A. Polman, H.A. Atwater: Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model Dionne, Phys. Rev. B 72, 7 (2005); p. 075405CrossRefGoogle Scholar
  32. 32.
    V. Almeida, Q. Xu, C. Barrios, M. Lipson: Guiding and confining light in void nanostructure, Opt. Lett. 29, 1209 (2004).CrossRefGoogle Scholar
  33. 33.
    E.N. Economou: Surface plasmons in thin films, Phys. Rev. 182, 539 (1969).CrossRefGoogle Scholar
  34. 34.
    R. Zia, M.D. Selker, P.B. Catrysse, M.L. Brongersma: Geometries and materials for subwavelength surface plasmon modes, J. Opt. Soc. Am. A 21, 2442 (2004).CrossRefGoogle Scholar
  35. 35.
    P.B. Johnson, R.W. Christy: Optical-constants of noble-metals, Phys. Rev. B 6, 4370 (1972).CrossRefGoogle Scholar
  36. 36.
    E. Palik, G. Ghosh: Handbook of Optical Constants of Solids II (Academic Press, Inc., New York, 1991).Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • HARRY A. ATWATER
    • 1
  • JENNIFER A. DIONNE
    • 1
  • LUKE A. SWEATLOCK
    • 1
  1. 1.Thomas J. Watson Laboratory of Applied PhysicsCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations