Part of the Springer Series in Optical Sciences book series (SSOS, volume 131)


Surface plasmon polaritons (SPPs) are quasi-two-dimensional electromagnetic excitations, propagating along a dielectric-metal interface and having the field components decaying exponentially into both neighboring media. The field of a plane SPP comprises a magnetic field component, which is parallel to the interface plane and perpendicular to the SPP propagation direction, and two electric field components, of which the main one is perpendicular to the interface (Fig. 6.1(a)). SPPs can be tightly bound to the metal surface, penetrating on the order of 100 nm into the dielectric and ∼10 nm into the metal. This feature implies the possibility of using SPPs for miniature photonic circuits and optical interconnects and has attracted a great deal of attention to SPPs. It has been shown using numerical simulations that nanometersized metal rods can support extremely confined SPP modes, though only propagating over hundreds of nanometers. Similar properties were expected4 and indeed found for the electromagnetic excitations supported by chains of metal nano-spheres. Metal stripes of finite width can also be employed to laterally confine the SPP propagation along the stripes.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Raether: Surface Plasmons (Springer-Verlag, Berlin, 1988).Google Scholar
  2. 2.
    W.L. Barnes, A. Dereux, T.W. Ebbesen: Surface plasmon subwavelength optics, Nature 424, 824 (2003).CrossRefGoogle Scholar
  3. 3.
    J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, T. Kobayashi: Guiding of a one-dimensional optical beam with nanometer diameter, Opt. Lett. 22, 475 (1997).Google Scholar
  4. 4.
    M. Quinten, A. Leitner, J.R. Krenn, F.R. Aussenegg: Electromagnetic energy transport via linear chains of silver nanoparticles, Opt. Lett. 23, 1331 (1998).Google Scholar
  5. 5.
    S.A. Maier, P.G. Kik, H.A. Atwater, S. Meltzer, E. Harel, B.E. Koel, A.A.G. Requicha: Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides, Nature Mater. 2, 229 (2003).CrossRefGoogle Scholar
  6. 6.
    J.R. Krenn, J.C. Weeber: Surface plasmon polaritons in metal stripes and wires, Philos. Trans. Roy. Soc. A 326, 739 (2004).CrossRefGoogle Scholar
  7. 7.
    P. Berini: Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures, Phys. Rev. B 61, 10484 (2000).CrossRefGoogle Scholar
  8. 8.
    A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M.S. Larsen, and S.I. Bozhevolnyi: Integrated optical components utilizing long-range surface plasmon polaritons, J. Lightwave Technol. 23, 413 (2005).CrossRefGoogle Scholar
  9. 9.
    J.D. Joannopoulos, R.D. Meade, J.N. Winn: Photonic Crystals (Princeton University Press, Princeton, 1995).Google Scholar
  10. 10.
    T.F. Krauss, R.M. De La Rue: Photonic crystals in the optical regime—past, present, and future, Prog. Quant. Elect. 23, 51 (1999).CrossRefGoogle Scholar
  11. 11.
    C.M. Soukoulis, ed.: Photonic Crystals and Light Localization in the 21st Century, (Kluwer, Dordrecht, 2001).Google Scholar
  12. 12.
    R.H. Ritchie, E.T. Arakawa, J.J. Cowan, R.N. Hamm: Surface-plasmon resonance effect in grating diffraction, Phys. Rev. Lett. 21, 1530 (1968).CrossRefGoogle Scholar
  13. 13.
    S.C. Kitson, W.L. Barnes, J.R. Sambles: Full photonic band gap for surface modes in the visible, Phys. Rev. Lett. 77, 2670 (1996).CrossRefGoogle Scholar
  14. 14.
    S.I. Bozhevolnyi, J. Erland, K. Leosson, P.M.W. Skovgaard, J.M. Hvam: Waveguiding in surface plasmon polariton band gap structures, Phys. Rev. Lett. 86, 3008 (2001).CrossRefGoogle Scholar
  15. 15.
    S.I. Bozhevolnyi, V.S. Volkov, K. Leosson, J. Erland: Observation of propagation of surface plasmon polaritons along line defects in a periodically corrugated metal surface, Opt. Lett. 26, 734 (2001).CrossRefGoogle Scholar
  16. 16.
    S.I. Bozhevolnyi, V.S. Volkov, K. Leosson, A. Boltasseva: Bend loss in plasmon polariton band-gap structures, Appl. Phys. Lett. 79, 1076 (2001).CrossRefGoogle Scholar
  17. 17.
    S.I. Bozhevolnyi, V.S. Volkov: Multiple-scattering dipole approach to modeling of surface plasmon polariton band gap structures, Opt. Comm. 198, 241 (2001).CrossRefGoogle Scholar
  18. 18.
    A.V. Shchegrov, I.V. Novikov, A.A. Maradudin: Scattering of surface plasmon polaritons by a circularly symmetric surface defect, Phys. Rev. Lett. 78, 4269 (1997).CrossRefGoogle Scholar
  19. 19.
    M. Kretschmann: Phase diagrams of surface plasmon polaritonic crystals, Phys. Rev. B 68, 125419 (2003).CrossRefGoogle Scholar
  20. 20.
    T. Søndergaard, S.I. Bozhevolnyi: Vectorial model for multiple scattering by surface nanoparticles via surface polariton-polariton interactions, Phys. Rev. B 67, 165405-1–8 (2003).Google Scholar
  21. 21.
    V. Coello, T. Søndergaard, S.I. Bozhevolnyi: Modeling of a surface plasmon polariton interferometer, Opt. Commun. 240, 345 (2004).CrossRefGoogle Scholar
  22. 22.
    L. Novotny, B. Hecht, D. Pohl: Interference of locally excited surface plasmons, J. Appl. Phys. 81, 1798 (1997).CrossRefGoogle Scholar
  23. 23.
    T. Søndergaard, B. Tromborg: Lippmann-Schwinger integral equation approach to the emission of radiation by sources located inside finite-sized dielectric structures, Phys. Rev. B 66, 155309 (2002).CrossRefGoogle Scholar
  24. 24.
    T. Søndergaard, S.I. Bozhevolnyi: Surface plasmon polariton scattering by a small particle placed near a metal surface: An analytical study, Phys. Rev. B 69, 045422 (2004).CrossRefGoogle Scholar
  25. 25.
    J. Arentoft, T. Søndergaard, M. Kristensen, A. Boltasseva, M. Thorhauge, L. Frandsen: Low-loss silicon-on-insulator photonic crystal waveguides, Electron. Lett. 38, 274 (2002).CrossRefGoogle Scholar
  26. 26.
    E. Palik: Handbook of Optical Constants of Solids (Academic, San Diego, CA, 1985).Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

    • 1
    • 1
    • 2
  1. 1.Micro Managed Photons A/SFarumDenmark
  2. 2.Institute of Physics and NanotechnologyAalborg UniversityAalborg ØstDenmark

Personalised recommendations