Advertisement

NUMERICAL SIMULATIONS OF LONG-RANGE PLASMONIC TRANSMISSION LINES

  • ALOYSE DEGIRON
  • DAVID R. SMITH
Part of the Springer Series in Optical Sciences book series (SSOS, volume 131)

Abstract

Structures that guide waves can be found in almost every optoelectronic or photonic device. Yet, the basic principles of guided waves in practical realizations have not evolved substantially over the past several decades. At microwave or radio frequencies (RF), waveguides typically comprise metal-enclosed volumes with or without a central conductor; in the latter case, the lateral dimensions of the waveguide dictate the frequencies of operation. At optical wavelengths, metals are comparatively poor conductors and have traditionally been excluded as optical components. Instead, dielectric waveguides are employed in which the mismatch between a higher dielectric region and free space or a lower dielectric cladding constrains light in a plane perpendicular to propagation. Because of the low losses in insulating dielectrics, optical waveguides (such as fiber optics) can support propagating modes with extraordinarily low absorption attenuation—often less than 1 dB per kilometer.

Keywords

Transmission Line Dispersion Curve Surface Plasmon Polaritons Dielectric Waveguide Leaky Mode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. M. Pozar: Microwave Engineering (John Wiley & Sons, New York, 1998).Google Scholar
  2. 2.
    A. Yariv: Optical Electronics in Modern Communications (Oxford University Press, New York, 1997).Google Scholar
  3. 3.
    J.-C. Weeber, A. Dereux, C. Girard, J. R. Krenn, J.-P. Goudonnet: Plasmon polaritons of metallic nanowires for controlling submicron propagation of light, Phys. Rev. B 60(12), 9061–9068 (1999).CrossRefGoogle Scholar
  4. 4.
    J.-C. Weeber, J. R. Krenn, A. Dereux, B. Lamprecht, Y. Lacroute, J.-P. Goudonnet: Near-field observation of surface plasmon polariton propagation on thin metal stripes, Phys. Rev. B 64(4), 045411 (2001).CrossRefGoogle Scholar
  5. 5.
    B. Lamprecht, J.R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F.R. Aussenegg: Surface plasmon propagation in microscale metal stripes, Appl. Phys. Lett. 79(1), 51–53 (2001).CrossRefGoogle Scholar
  6. 6.
    P. Berini, Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures, Phys. Rev. B 61(15) 10484–10503 (2001).CrossRefGoogle Scholar
  7. 7.
    P. Berini: Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of asymmetric structures, Phys. Rev. B 63, 125417 (2001).CrossRefGoogle Scholar
  8. 8.
    R. Charbonneau, P. Berini, E. Berolo, E. Lisicka-Shrzek: Experimental observation of plasmon-polariton waves supported by a thin metal film of finite width, Optics Lett. 52(11), 844–846 (2000).CrossRefGoogle Scholar
  9. 9.
    R. Charbonneau, N. Lahoud, G. Mattiussi, P. Berini: Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons, Optics. Express 13(3), 977–984 (2005).CrossRefGoogle Scholar
  10. 10.
    T. Nikolajsen, K. Leosson, I. Salakhutdinov, S.I. Bozhevolnyi: Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths, Appl. Phys. Lett. 82(5), 668–670 (2003).CrossRefGoogle Scholar
  11. 11.
    T. Nikolajsen, K. Leosson, S.I. Bozhevolnyi: Surface plasmon polariton based modulators and switches operating at telecom wavelengths, Appl. Phys. Lett. 82(5), 668–670 (2003).CrossRefGoogle Scholar
  12. 12.
    Rashid Zia, Anu Chandran, Mark L. Brongersma: Dielectric waveguide model for guided surface polaritons, Optics lett. 30(12), 1473–1475 (2005).CrossRefGoogle Scholar
  13. 13.
    H. Raether: Surface Plasmons (Springer-Verlag, Berlin, 1988).Google Scholar
  14. 14.
    W.L. Barnes, A. Dereux, T.W. Ebbesen: Surface plasmon subwavelength optics, Nature 424, 824–830 (2003).CrossRefGoogle Scholar
  15. 15.
    D. Sarid: Long-range surface-plasma waves on very thin metal films, Phys. Rev. Lett. 47(26), 1927–1930 (1981).CrossRefGoogle Scholar
  16. 16.
    J.J. Burke, G.I. Stegeman, T. Tamir: Surface-polariton-like waves guided by thin, lossy metal films, Phys. Rev. B 33(8), 5286–5201 (1986).CrossRefGoogle Scholar
  17. 17.
    P.B. Johnson, R.W. Christy: Optical constants of the noble metals, Phys. Rev. B 6(12), 4370–4379 (1972).CrossRefGoogle Scholar
  18. 18.
    W.L. Barnes, T.W. Preist, S.C. Kitson, J.R. Sambles: Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings, Phys. Rev. B 54(9), 6227–6244 (1996).CrossRefGoogle Scholar
  19. 19.
    W.L. Barnes, S.C. Kitson, T.W. Preist, J.R. Sambles: Photonic surfaces for surface-plasmon polaritons, J. Opt. Soc. Am. A 14(7), 1654–1661 (1997).CrossRefGoogle Scholar
  20. 20.
    S.I. Bozhevolnyi, V.S. Volkov, K. Leosson, J. Erland: Observation of propagation of surface plasmon polaritons along line defects in a periodically corrugated metal surface, Opt. Lett. 26(10), 734–736 (2001).CrossRefGoogle Scholar
  21. 21.
    P.E. Barclay, K. Srinivasan, M. Borselli, O. Painter: Probing the dispersive and spatial properties of photonic crystal waveguides via highly efficient coupling from fiber tapers, Appl. Phys. Lett. 85, 4–6 (2004).CrossRefGoogle Scholar
  22. 22.
    S.A. Maier, M.D. Friedman, P.E. Barclay, O. Painter: Experimental demonstration of fiber-accessible metal nanoparticle plasmon waveguides for planar energy guiding and sensing, Appl. Phys. Lett. 86, 071103 (2005).CrossRefGoogle Scholar
  23. 23.
    A. Lai, C. Caloz, T. Itoh: Composite right/left-handed transmission line metamaterials, IEEE Microwave Mag. 5(3), 34–50 (2004).CrossRefGoogle Scholar
  24. 24.
    R. Islam, F. Elek, G.V. Eleftheriades: Coupled-line metamaterial coupler having co-directional phase but contra-directiona power flow, Electronics Lett. 40(5), 315–317 (2004).CrossRefGoogle Scholar
  25. 25.
    V.G. Veselago: The electrodynamics of substances with simultaneously negative values of ε and μ, Sov. Phys. Usp. 10, 509–514 (1968).CrossRefGoogle Scholar
  26. 26.
    D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, S. Schultz: Composite medium with simultaneously negative permeability and permittivity, Phys. Rev. Lett. 84(18), 4184–4187 (2000).CrossRefGoogle Scholar
  27. 27.
    A. Christ, T. Zentgraf, J. Kuhl, S.G. Tikhodeev, N.A. Gippius, H. Giessen: Optical properties of planar metallic photonic crystal structures: experiment and theory, Phys. Rev. B 70, 125113 (2004).CrossRefGoogle Scholar
  28. 28.
    D. Marcuse: Curvature loss formula for optical fibers, J. Opt. Soc. Amer. 66, 216–220 (1976).CrossRefGoogle Scholar
  29. 29.
    J.-P. Berenger: A perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys. 114, 185–200 (1994).CrossRefGoogle Scholar
  30. 30.
    R. Mittra, U. Pekel: A new look at the perfectly matched layer (PML) concept for the reflectionless absorption of electromagnetic waves, IEEE Microwave Guided Wave Lett. 5, 84–86 (1995).CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • ALOYSE DEGIRON
    • 1
  • DAVID R. SMITH
    • 1
  1. 1.Department of Electrical and Computer EngineeringDuke UniversityDurhamUSA

Personalised recommendations