Advertisement

NEAR-FIELD AND FAR-FIELD PROPERTIES OF NANOPARTICLE ARRAYS

  • ANDREAS HOHENAU
  • ALFRED LEITNER
  • FRANZ R. AUSSENEGG
Part of the Springer Series in Optical Sciences book series (SSOS, volume 131)

Abstract

The reason for the strong interest in the electrodynamic properties of metal nanoparticles (i.e., particles with sub μm dimensions) is based on their surface plasmon modes (see Sect. 2.2.2). A metal nanoparticle can in some sense be seen as a resonator for surface plasmons and, like any (moderately damped) resonator, if excited resonantly the oscillation amplitude can overcome the excitation amplitude by orders of magnitude. For surface plasmons on metal nanoparticles this means a strong enhancement of the local electromagnetic field compared to the exciting electromagnetic field.

Keywords

Surface Plasmon Resonance Surface Enhance Raman Scattering Metal Nanoparticles Dielectric Function Extinction Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.I. Gersten. Surface shape resonances. In: Surface Enhanced Raman Scattering, ed by R.K. Chang and T.E. Furtak (Plenum Press, New York, 1982), p. 89.Google Scholar
  2. 2.
    M. Moskovits: Surface-enhanced spectroscopy, Rev. Mod. Phys. 57, 783 (1985).CrossRefGoogle Scholar
  3. 3.
    A. Wokaun: Surface enhancement of optical fields. Mechanism and applications, Mol. Phys. 56, 1 (1985).CrossRefGoogle Scholar
  4. 4.
    U. Kreibig, M. Vollmer: Optical Properties of Metal Clusters (Springer-Verlag, Berlin, 1995).Google Scholar
  5. 5.
    T. Schalkhammer: Nanoclusters as transducers for molecular structure and recognitive binding. In: Encyclopedia of Nanoscience and Nanotechnology, ed by H.S. Nalva (American Scientific Publishers, New York, 2004).Google Scholar
  6. 6.
    J.L. West, N.J. Halas: Engineered nanomaterials for biophotonics applications: Improving sensing, imaging, and therapeutics, Ann. Rev. Biomed. Eng. 5, 285 (2003).CrossRefGoogle Scholar
  7. 7.
    K. Baba, Kazutaka, Miyagi, Mitsunobu: Optical polarizer using anisotropic metallic island films with a large aperture and a high extinction ratio, Opt. Lett. 16, 964 (1991).CrossRefGoogle Scholar
  8. 8.
    G. Bauer, J. Hassmann, H. Walter, J. Hagemüller, C. Maier, T. Schalkhammer: Resonant nanocluster technology—From optical coding and high quality security features to biochips, Nanotechnology 14, 1289 (2003).CrossRefGoogle Scholar
  9. 9.
    M. Quinten, A. Leitner, J.R. Krenn, F.R. Aussenegg: Electromagnetic energy transport via linear chains of silver nanoparticles, Opt. Lett. 23, 1331 (1998).Google Scholar
  10. 10.
    S.A. Maier, M.L. Brongersma, P.G. Kik, S. Meltzer, A.A.G. Requicha, H.A. Atwater: Plasmonics—A route to nanoscale optical devices, Adv. Mater. 13, 1501 (2001).CrossRefGoogle Scholar
  11. 11.
    J.R. Lakovicz: Radiative decay engineering: Biophysical and biomedical applications, Anal. Biochem. 298, 1 (2001).CrossRefGoogle Scholar
  12. 12.
    J.R. Lakovicz, Y. Shen, S. D'Auria, J. Malicka, J. Fang, Z. Gryczynski, I. Gryczynski: Radiative decay engineering 2: Effects of silver island films on fluorescence intensity, lifetimes, and resonance energy transfer, Anal. Biochem. 301, 261 (2002).CrossRefGoogle Scholar
  13. 13.
    J. D. Jackson: Classical Electrodynamics (Wiley, New York, 1962).Google Scholar
  14. 14.
    C.F. Bohren, D.R. Huffman: Absorption and Scattering by Small Particles (Wiley, New York, 1983).Google Scholar
  15. 15.
    M. Kerker: The Scattering of Light and Other Electromagnetic Radiation (Academic Press, New York, 1969).Google Scholar
  16. 16.
    A. Wokaun, J.P. Gordon, P.F. Liao: Radiation damping in surface-enhanced Raman scattering, Phys. Rev. Lett. 48, 957 (1982).CrossRefGoogle Scholar
  17. 17.
    J. Kittel: Introduction to Solid State Physics (Wiley, New York, 1996).Google Scholar
  18. 18.
    Sönichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, P. Mulvaney: Drastic reduction of plasmon damping in gold nanorods, Phys. Rev. Lett. 88(7), 77402 (2002).CrossRefGoogle Scholar
  19. 19.
    W.Gotschy, K. Vonmetz, A. Leitner, F.R. Aussenegg: Thin films by regular patterns of metal nanoparticles: tailoring the optical properties by nanodesign, Appl. Phys. B 63, 381 (1996).Google Scholar
  20. 20.
    H. Ditlbacher, J.R. Krenn, B. Lamprecht, A. Leitner, F.R. Aussenegg: Spectrally coded optical data storage by metal nanoparticles, Opt. Lett. 25(8), 563 (2000).CrossRefGoogle Scholar
  21. 21.
    E.D. Palik: Handbook of Optical Constants of Solids (Academic Press, New York, 1985).Google Scholar
  22. 22.
    B. Lamprecht, J.R. Krenn, A. Leitner, F.R. Aussenegg: Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance, Phys. Rev. Lett. 84(20), 4721–4 (2000).CrossRefGoogle Scholar
  23. 23.
    B. Lamprecht, J.R. Krenn, A. Leitner, F.R. Aussenegg: SHG studies of plasmon dephasing in nanoparticles, Appl. Phys. B 69, 223 (1999).CrossRefGoogle Scholar
  24. 24.
    S. Zou, N. Janel, G. C. Schatz: Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes, J. Chem. Phys. 120(23), 10871 (2004).CrossRefGoogle Scholar
  25. 25.
    B. Lamprecht, A. Leitner, F.R. Aussenegg: SHG studies of plasmon dephasing in nanoparticles, Appl. Phys. B 68, 419 (1999).CrossRefGoogle Scholar
  26. 26.
    B. Lamprecht, J.R. Krenn, A. Leitner, F.R. Aussenegg: Resonant and off-resonant light-driven plasmons in metal nanoparticles studied by femtosecond-resolution third-harmonic generation, Phys. Rev. Lett. 83, 4421 (1999).CrossRefGoogle Scholar
  27. 27.
    P.F. Liao, A. Wokaun: Lightning rod effect in surface enhanced Raman scattering, J. Chem. Phys. 76, 751 (1982).CrossRefGoogle Scholar
  28. 28.
    Dereux, C. Girard, J.C. Weeber: Theoretical principles of near-field optical microscopies and spectroscopies, J. Chem. Phys. 112(18), 7775 (2000).CrossRefGoogle Scholar
  29. 29.
    J.R. Krenn, A. Dereux, J.C. Weeber, E. Bourillot, Y. Lacroute, J.P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F.R. Aussenegg, G. Girard: Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles, Phys. Rev. Lett. 82(12), 2590 (1999).CrossRefGoogle Scholar
  30. 30.
    M. Salerno, J.R. Krenn, A. Hohenau, H. Ditlbacher, G. Schider, A. Leitner, F.R. Aussenegg: The optical near-field of gold nanoparticle chains, Opt. Comm. 248(4–6), 543–9 (2005).CrossRefGoogle Scholar
  31. 31.
    B. Lamprecht, A. Leitner, F.R. Aussenegg: Femtosecond decay-time measurement of electron-plasma oscillation in nanolithographically designed silver particles, Appl. Phys. B 64, 269 (1997).CrossRefGoogle Scholar
  32. 32.
    W. Rechberger, A. Hohenau, A. Leitner, J.R. Krenn, B. Lamprecht, F.R. Aussenegg: Optical properties of two interacting gold nanoparticles, Opt. Comm. 220, 137 (2003).CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • ANDREAS HOHENAU
    • 1
  • ALFRED LEITNER
    • 1
  • FRANZ R. AUSSENEGG
    • 1
  1. 1.Institute of Physics and Erwin Schrödinger Institute for Nanoscale ResearchKarl-Franzens UniversityGrazAustria

Personalised recommendations