Part of the Springer Series in Optical Sciences book series (SSOS, volume 131)


Metallic particles and surfaces display diverse and complex opto-electrical properties. These properties, such as intense colors of noble metal colloids, strongly depend on metal and colloid size, and have been a subject of studies for centuries. Thin metal surfaces display strong absorption of light impinging under a very well defined angle that strongly depends on physicochemical properties of dielectrics on both sides of the metal film. For the last 20 years surface plasmon resonance (SPR) technology has been widely utilized in biochemical and biophysical analyses and is now extensively used for studying bioaffinity reactions on surfaces.


Surface Plasmon Resonance Observation Angle Surface Plasmon Resonance Imaging Glass Prism Coupling Angle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B.L. Frey, C.E. Jordan, S. Kornguth, R.M. Corn: Control of the specific adsorption of proteins onto gold surfaces with poly(l-lysine) monolayers, Anal. Chem. 67, 4452–4457 (1995).CrossRefGoogle Scholar
  2. 2.
    A.G. Frutos, R.M. Corn: SPR of ultrathin organic films, Anal. Chem. 70, 449A–455A (1998).Google Scholar
  3. 3.
    Z. Salamon, H.A. Macleod, G. Tollin: Surface plasmon resonance spectroscopy as a tool for investigating the biochemical and biophysical properties of membrane protein systems. I: Theoretical principles, Biochim. Biophys. Acta 1331, 117–129 (1997).Google Scholar
  4. 4.
    B.P. Nelson, A.G. Frutos, J.M. Brockman, R.M. Corn: Near-infrared surface plasmon resonance measurements of ultrathin films. 1. Angle shift and SPR imaging experiments, Anal. Chem. 71, 3928–3934 (1999).CrossRefGoogle Scholar
  5. 5.
    B. Liedberg, I. Lundstrom: Principles of biosensing with an extended coupling matrix and surface plasmon resonance, Sensors Actuators B 11, 63–72 (1993).CrossRefGoogle Scholar
  6. 6.
    N. Calander: Theory and simulation of surface plasmon-coupled directional emission from fluorophores at planar structures, Anal. Chem. 76, 2168–2173 (2004).CrossRefGoogle Scholar
  7. 7.
    N. Calander: Surface plasmon-coupled emission and Fabry-Perot resonance in the sample layer: a theoretical approach. J. Phys. Chem. B 109(29), 13957–13963 (2005).CrossRefGoogle Scholar
  8. 8.
    S. Ekgasit, C Thammacharoen, F. Yu, W. Knoll: Evanescent Field in Surface Plasmon Resonance and Surface Plasmon Field-Enhanced Fluorescence Spectroscopies, Anal. Chem. 76, 2210–2219 (2004).CrossRefGoogle Scholar
  9. 9.
    K. Vasiliev, W. Knoll, M. Kreiter: Fluorescence intensities of chromophores in front of a thin metal film, J. Chem. Phys. 120(7), 3439–3445 (2004).CrossRefGoogle Scholar
  10. 10.
    M. Born, E. Wolf: Principles of Optics (Pergamon, Oxford, 1980).Google Scholar
  11. 11.
    C.W. Chew: Waves and Fields in Inhomogeneous Media (Van Nostrand Reinhold, New York, 1995).Google Scholar
  12. 12.
    R.E. Benner, R. Dornhaus, R.K. Chang: Angular Emission Profiles of Dye Molecules Excited by Surface-Plasmon Waves at a Metal-Surface, Opt. Commun. 30(2), 145–149 (1979).CrossRefGoogle Scholar
  13. 13.
    M. Abramowitz, I.A. Stegun eds: Handbook of Mathematical Functions, 1st edn (Dover Publications Inc, New York, 1965).Google Scholar
  14. 14.
    A. Sommerfeld: Partial Differential Equations in Physics (Academic Press, New York, 1949).Google Scholar
  15. 15.
    F.J.P. Schuurmans, A. Lagendijk: Luminescence of Eu(fod)(3) in a homologic series of simple alcohols. J. Chem. Phys. 113(8), 3310–3314 (2000).CrossRefGoogle Scholar
  16. 16.
    R.M Amos, W.L Barnes: Modification of the spontaneous emission rate of Eu3+ ions close to a thin metal mirror, Phys. Rev. B 55 (11), 7249–7254 (1997).CrossRefGoogle Scholar
  17. 17.
    I. Gryczynski, J. Malicka, Z. Gryczynski, J.R Lakowicz: Radiative decay engineering 4. Experimental studies of surface plasmon coupled directional emission, Anal. Biochem. 324, 170–182 (2003a).CrossRefGoogle Scholar
  18. 18.
    E.D. Palik: Handbook of Optical Constants of Solids (Academic, New York 1985).Google Scholar
  19. 19.
    E.G. Matveeva, Z. Gryczynski, J. Malicka, J. Lukomska, S. Makowiec, K.W. Berndt, J.R. Lakowicz, I. Gryczynski: Directional surface plasmon-coupled emission—application for an immunoassay in whole blood, Anal. Biochem. 344(2), 161–167 (2005).CrossRefGoogle Scholar
  20. 20.
    Z. Gryczynski, I. Gryczynski, E. Matveeva, J. Malicka, K. Nowaczyk, J.R. Lakowicz J: Surface-plasmon-coupled emission: New technology for studying molecular processes. In: Cytometry: New Developments, Methods in Cell Biology, vol. 75, 4th edn, ed by Z. Darzynkiewicz, M. Roederer, H.J. Tanke (Academic Press, New York, 2004), pp. 73–104.Google Scholar
  21. 21.
    E. Matveeva, J. Malicka, I. Gryczynski, Z. Gryczynski, J.R. Lakowicz: Multi-wavelength immunoassays using surface plasmon coupled emission, Biochem. Biophys. Res. Commun. 313, 721–726 (2004).CrossRefGoogle Scholar
  22. 22.
    J.R. Lackowicz, J. Malicka, I. Gryczynski, Z. Gryczynski: Directional surface plasmon-coupled emission: a new method for high sensitivity detection, Biochem. Biophys. Res. Commun. 307, 435–439 (2003).CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

    • 1
    • 1
    • 2
    • 3
    • 3
    • 1
  1. 1.Department of Molecular Biology and Immunology, Department of Cell Biology and GeneticsUniversity of North TexasUSA
  2. 2.Department of PhysicsChalmers University of TechnologyGoteborgSweden
  3. 3.Center for Fluorescence SpectroscopyUniversity of Maryland at BaltimoreBaltimoreUSA

Personalised recommendations