LOCALIZED SURFACE PLASMONS FOR OPTICAL DATA STORAGE BEYOND THE DIFFRACTION LIMIT

  • JUNJI TOMINAGA
Part of the Springer Series in Optical Sciences book series (SSOS, volume 131)

Abstract

Optical data storage technology and its storage capacity have gradually been improved over the last two decades, especially thanks to the development of shorter-wavelength semiconductor laser units and high-precision optical lithography (mastering). Currently the available storage capacity is beyond 5 GB in a 12-cm disc for DVD, and a 25 GB disc drive system with a 405-nm blue laser unit is also available as blu-ray disc or HD-DVD. However, the storage capacity has almost reached the optical limit because of far-field diffraction. At the moment, there is no alternative way to improve the laser spot size to less than 300 nm using far-field optics, even with the most advanced optical disc technology employing a 405-nm wavelength and a lens numerical aperture (NA) of 0.85.

Keywords

Crystallization Platinum Argon Hexagonal Posit 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Betzig, J.K. Trautman, R. Wolfe, E.M. Gyorgy, P.L. Finn, M.H. Kryder, C.H. Chang: Near-field magneto-optics and high density data storage, Appl. Phys. Lett. 61, 142 (1992).CrossRefGoogle Scholar
  2. 2.
    E. Betzig, S.G. Grubb, R.J. Chichester, D.J. DiGiovanni, J.S. Weiner: Fiber laser probe for near-field scanning optical microscopy, Appl. Phys. Lett. 63, 3550 (1993).CrossRefGoogle Scholar
  3. 3.
    B.D. Terris, H.J. Mamin, D. Rugar, W.R. Studenmund, G.S. Kino: Near-field optical data storage using a solid immersion lens, Appl. Phys. Lett. 65, (1994) 388.CrossRefGoogle Scholar
  4. 4.
    H. Ukita, Y. Katagiri, H. Nakada: Flying head read/write characteristics using a monolithically integrated laser diode/photodiode at a wavelength of 1.3 μm, SPIE 1499, 248 (1991).CrossRefGoogle Scholar
  5. 5.
    S.M. Mansfield, G.S. Kino: Solid immersion microscope, Appl. Phys. Lett. 57, 2615 (1990).CrossRefGoogle Scholar
  6. 6.
    I. Ichimura, S. Hayashi, G.S. Kino: High-density optical recording using a solid immersion lens, Appl. Opt. 36, 4339 (1997).CrossRefGoogle Scholar
  7. 7.
    J. Tominaga, T. Nakano, N. Atoda: An approach for recording and readout beyond the diffraction limit with an Sb thin film, Appl. Phys. Lett. 73, 2078 (1998).CrossRefGoogle Scholar
  8. 8.
    J. Tominaga, D.P. Tsai eds: Optical NanotechnologiesThe Nanipulation of Surface and Local Plasmons (Springer, Berlin, Heidelberg, 2003).Google Scholar
  9. 9.
    J.H. Kim, I. Hwang, D. Yoon, I. Park, D. Shin, T. Kikukawa, T. Shima, J. Tominaga: Technical Digest of Optical Data Storage 2003 (Vancouver, Canada, May 11–14, 2003), p. 24.Google Scholar
  10. 10.
    J. Tominaga, T. Nakano: Optical Near-Field RecordingScience and Technology (Springer, Berlin, Heidelberg, 2005).Google Scholar
  11. 11.
    T. Chattopadhyay et al: Neutron diffraction study on the structural phase transition in GeTe, J. Phys. C: Solid State Phys. 20, 1431 (1987).CrossRefGoogle Scholar
  12. 12.
    M.E. Lines, A.M. Glass: Principles and Applications of Ferroelectrics and Related Materials (Oxford Univ. Press, Oxford, 1977).Google Scholar
  13. 13.
    T. Matsunaga, Y. Umetani, N. Yamada: Structural study of a Ag3.4ln3.7Sb76.4Te16.5 quadruple compound utilized for phase-change optical disks, Phy. Rev. B 64, 1184116 (2001).Google Scholar
  14. 14.
    J. Tominaga et al: Ferroelectric catastrophe: beyond nanometre-scale optical resolution, Nanotechnology 15, 411 (2004).CrossRefGoogle Scholar
  15. 15.
    V.M. Fridkin: Photoferroelectrics (Springer, Berlin, Heidelberg, 1979).Google Scholar
  16. 16.
    J. Tominaga et al.: The characteristics and the potential of super resolution near-field structure, Jpn. J. Appl. Phys. 39, 957 (2000).CrossRefGoogle Scholar
  17. 17.
    A. Kolobov, P. Fons, A.I. Frenkel, A.L. Ankudinov, J. Tominaga, T. Uruga: Understanding the phase-change mechanism of rewritable optical media, Nat. Mater. 3, 703 (2004).CrossRefGoogle Scholar
  18. 18.
    R.E. Peierls: Quantum Theory of Solids (Calarendon Press, Oxford, 1955).Google Scholar
  19. 19.
    K. Seifert, J. Hafner, J. Furthmuller, G. Kresse: The influence of generalized gradient corrections to the LDA on predictions of structural phase stability: the Peierls distortion in As and Sb, J. Phys. Condens. Matter 7, 3683 (1995).CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • JUNJI TOMINAGA
    • 1
  1. 1.Center for Applied Near-Field Optics Research (CAN-FOR)National Institute for Advanced Industrial Science and Technology (AIST)TsukubaJapan

Personalised recommendations