• N.K. GRADY
  • N.J. HALAS
Part of the Springer Series in Optical Sciences book series (SSOS, volume 131)


The recent development of a multitude of different metal-based nanoparticles and nanostructures has been fueled by a variety of uses for these structures in spectroscopic, biomedical, and photonic applications. Examples include biosensing applications such as surface plasmon resonance (SPR) sensing, Raman spectroscopy, whole blood immunoassays, and in vivo optical contrast agents. In addition to sensing, medical applications include drug delivery materials and photothermal cancer therapy. New synthesis procedures have produced nanoparticle morphologies such as rods, shells, cups, rings, and cubes. Complementary to nanoparticle chemistry, new planar fabrication methods have produced a variety of nanopatterned metal films that can support both propagating and localized surface plasmons. The applications of these metal nanostructures take advantage of the enhancement of the local electromagnetic field associated with their plasmon resonances. In general, the frequency at which these plasmon resonances occurs is determined both by the dielectric properties of the materials composing the nanoparticles and the geometry of the nanoparticles.


Surface Plasmon Resonance Surface Enhance Raman Scattering Plasmon Resonance Plasmon Mode Surface Enhance Raman Spectroscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Ekgasit, C. Thammacharoen, F. Yu, W. Knoll: Evanescent field in surface plasmon resonance and surface plasmon field-enhanced fluorescence spectroscopies, Anal. Chem. 76 (8), 2210–2219 (2004).CrossRefGoogle Scholar
  2. 2.
    R.P. Van Duyne: Molecular plasmonics, Science 306 (5698), 985–986 (2004).CrossRefGoogle Scholar
  3. 3.
    A.J. Haes, L. Chang, W.L. Klein, R.P. Van Duyne: Detection of a biomarker for Alzheimer's disease from synthetic and clinical samples using a nanoscale optical biosensor, J. Am. Chem. Soc. 127 (7), 2264–2271 (2005).CrossRefGoogle Scholar
  4. 4.
    S.R. Sershen, S.L. Westcott, N.J. Halas, J.L. West: Temperature-sensitive polymer-nanoshell composites for photothermally modulated drug delivery, J. Biomed. Mater. Res. 51 (3), 293–298 (2000).CrossRefGoogle Scholar
  5. 5.
    S.A. Maier, M.L. Brongersma, P.G. Kik, S. Meltzer, A.A.G. Requicha, B.E. Koel, H.A. Atwater: Plasmonics—A route to nanoscale optical devices, Adv. Mater. 15 (7–8), 562–562 (2003).CrossRefGoogle Scholar
  6. 6.
    Y.G. Sun, Y.N. Xia,: Increased sensitivity of surface plasmon resonance of gold nanoshells compared to that of gold solid colloids in response to environmental changes, Anal. Chem. 74 (20), 5297–5305 (2002).CrossRefGoogle Scholar
  7. 7.
    F. Tam, C. Moran, N. Halas: Geometrical parameters controlling sensitivity of nanoshell plasmon resonances to changes in dielectric environment, J. Phys. Chem. B 108 (45), 17290–17294 (2004).CrossRefGoogle Scholar
  8. 8.
    J.B. Jackson, N.J. Halas: Surface-enhanced Raman scattering on tunable plasmonic nanoparticle substrates, Proc. Natl. Acad. Sci. U S A 101 (52), 17930–17935 (2004).CrossRefGoogle Scholar
  9. 9.
    K. Kneipp, H. Kneipp, I. Itzkan, R.R. Dasari, M.S. Feld: Ultrasensitive chemical analysis by Raman spectroscopy, Chem. Rev. 99 (10), 2957–+ (1999).CrossRefGoogle Scholar
  10. 10.
    Y. Lu, G.L. Liu, J. Kim, Y.X. Mejia, L.P. Lee: Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect, Nano Lett. 5 (1), 119–124 (2005).CrossRefGoogle Scholar
  11. 11.
    L.R. Hirsch, J.B. Jackson, A. Lee, N.J. Halas, J. West: A whole blood immunoassay using gold nanoshells, Anal. Chem. 75 (10), 2377–2381 (2003).CrossRefGoogle Scholar
  12. 12.
    C. Loo, A. Lin, L. Hirsch, M.H. Lee, J. Barton, N. Halas, J. West, R. Drezek: Nanoshell-enabled photonics-based imaging and therapy of cancer, Technol. Cancer Res. Treat. 3 (1), 33–40 (2004).Google Scholar
  13. 13.
    D.P.O'Neal, L.R. Hirsch, N.J. Halas, J.D. Payne, J.L. West: Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles, Cancer Lett. 209 (2), 171–176 (2004).CrossRefGoogle Scholar
  14. 14.
    B. Nikoobakht, M.A. El-Sayed: Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method, Chem Mater. 15 (10), 1957–1962 (2003).CrossRefGoogle Scholar
  15. 15.
    S.J. Oldenburg, R.D. Averitt, S.L. Westcott, N.J. Halas: Nanoengineering of optical resonances, Chem. Phys. Lett. 288 (2–4), 243–247 (1998).CrossRefGoogle Scholar
  16. 16.
    Y.G. Sun, Y.N. Xia: Gold and silver nanoparticles: A class of chromophores with colors tunable in the range from 400 to 750 nm, Analyst 128 (6), 686–691 (2003).CrossRefGoogle Scholar
  17. 17.
    C. Charnay, A. Lee, S.Q. Man, C.E. Moran, C. Radloff, R.K. Bradley, N.J. Halas: Reduced symmetry metallodielectric nanoparticles: Chemical synthesis and plasmonic properties, J. Phys. Chem. B 107 (30), 7327–7333 (2003).CrossRefGoogle Scholar
  18. 18.
    J.C. Love, B.D. Gates, D.B. Wolfe, K.E. Paul, G.M. Whitesides: Fabrication and wetting properties of metallic half-shells with submicron diameters, Nano Lett. 2 (8), 891–894 (2002).CrossRefGoogle Scholar
  19. 19.
    J. Aizpurua, P. Hanarp, D.S. Sutherland, M. Kall, G.W. Bryant, F.J.G. de Abajo: Optical properties of gold nanorings, Phys. Rev. Lett. 90 (5), (2003).CrossRefGoogle Scholar
  20. 20.
    Y. Sun, Y. Xia: Shape-controlled synthesis of gold and silver Nanoparticles, Science 5601, 2176–2179 (2002).CrossRefGoogle Scholar
  21. 21.
    C.L. Haynes, R.P. Van Duyne: Nanosphere lithography: A versatile nanofabrication tool for studies of size-dependent nanoparticle optics, J. Phys. Chem. B 105 (24), 5599–5611 (2001).CrossRefGoogle Scholar
  22. 22.
    C.E. Moran, J.M. Steele, N.J. Halas: Chemical and dielectric manipulation of the plasmonic band gap of metallodielectric arrays, Nano Lett. 4 (8), 1497–1500 (2004).CrossRefGoogle Scholar
  23. 23.
    A.L. Aden, M. Kerker: Scattering of electromagnetic waves from 2 concentric spheres, J. Appl. Phys. 22 (10), 1242–1246 (1951).CrossRefGoogle Scholar
  24. 24.
    K.L. Kelly, C. Eduardo, L.L. Zhao, G.C. Schatz: The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment, J. Phys. Chem. B 107 (3), 668–677 (2003).CrossRefGoogle Scholar
  25. 25.
    G. Mie: Articles on the optical characteristics of turbid tubes, especially colloidal metal solutions, Annalen Der Physik 25 (3), 377–445 (1908).CrossRefGoogle Scholar
  26. 26.
    B.T. Draine, P.J. Flatau: Discrete-dipole approximation for scattering calculations, J. Opt. Soc. Am. A 11 (4), 1491–1499 (1994).CrossRefGoogle Scholar
  27. 27.
    M. Futamata, Y. Maruyama, M. Ishikawa: Local electric field and scattering cross section of Ag nanoparticles under surface plasmon resonance by finite difference time domain method, J. Phys. Chem. B 10 7(31), 7607–7617 (2003).CrossRefGoogle Scholar
  28. 28.
    C. Oubre, P. Nordlander: Optical properties of metallodielectric nanostructures calculated using the finite difference time domain method, J. Phys. Chem. B 108 (46), 17740–17747 (2004).CrossRefGoogle Scholar
  29. 29.
    P. Nordlander, C. Oubre, E. Prodan, K. Li, M.I. Stockman: Plasmon hybridizaton in nanoparticle dimers, Nano Lett. 4 (5), 899–903 (2004).CrossRefGoogle Scholar
  30. 30.
    P. Nordlander, E. Prodan: Plasmon hybridization in nanoparticles near metallic surfaces, Nano Lett. 4 (11), 2209–2213 (2004).CrossRefGoogle Scholar
  31. 31.
    E. Prodan, P. Nordlander: Plasmon hybridization in spherical nanoparticles, J. Chem. Phys. 120 (11), 5444–5454 (2004).CrossRefGoogle Scholar
  32. 32.
    E. Prodan, C. Radloff, N.J. Halas, P. Nordlander: A hybridization model for the plasmon response of complex nanostructures, Science 302 (5644), 419–422 (2003).CrossRefGoogle Scholar
  33. 33.
    C. Radloff, N.J. Halas: Plasmonic properties of concentric nanoshells, Nano Lett. 4 (7), 1323–1327 (2004).CrossRefGoogle Scholar
  34. 34.
    S.J. Oldenburg, J.B. Jackson, S.L. Westcott, N.J. Halas: Infrared extinction properties of gold nanoshells, Appl. Phys. Lett. 75 (19), 2897–2899 (1999).CrossRefGoogle Scholar
  35. 35.
    E. Prodan, A. Lee, P. Nordlander: The effect of a dielectric core and embedding medium on the polarizability of metallic nanoshells, Chem. Phys. Lett. 360 (3–4), 325–332 (2002).CrossRefGoogle Scholar
  36. 36.
    E. Prodan, P. Nordlander: Electronic structure and polarizability of metallic nanoshells, Chem. Phys. Lett. 352 (3–4), 140–146 (2002).CrossRefGoogle Scholar
  37. 37.
    K. Kneipp, H. Kneipp, I. Itzkan, R.R. Dasari, M.S. Feld: Ultrasensitive chemical analysis by Raman spectroscopy, Chem. Rev. 99 (10), 2957–2975 (1999).CrossRefGoogle Scholar
  38. 38.
    H.X. Xu, E.J. Bjerneld, M. Kall, L. Borjesson: Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering, Phys. Rev. Lett. 83 (21), 4357–4360 (1999).CrossRefGoogle Scholar
  39. 39.
    J. Prikulis, F. Svedberg, M. Kall, J. Enger, K. Ramser, M. Goksor, D. Hanstorp: Optical spectroscopy of single trapped metal nanoparticles in solution, Nano Lett. 4 (1), 115–118 (2004).CrossRefGoogle Scholar
  40. 40.
    W. Rechberger, A. Hohenau, A. Leitner, J.R. Krenn, B. Lamprecht, F.R. Aussenegg: Optical properties of two interacting gold nanoparticles, Opt. Commun. 220 (1–3), 137–141 (2003).CrossRefGoogle Scholar
  41. 41.
    K.H. Su, Q.H. Wei, X. Zhang, J.J. Mock, D.R. Smith, S. Schultz: Interparticle coupling effects on plasmon resonances of nanogold particles, Nano Lett. 3 (8), 1087–1090 (2003).CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

    • 1
  • N.K. GRADY
    • 2
    • 3
  • N.J. HALAS
    • 2
    • 4
  1. 1.Department of PhysicsTrinity UniversitySan AntonioUSA
  2. 2.Department of Electrical and Computer EngineeringRice UniversityHoustonUSA
  3. 3.Department of Physics and AstronomyRice UniversityHoustonUSA
  4. 4.Department of ChemistryRice UniversityHoustonUSA

Personalised recommendations