Part of the Springer Series in Optical Sciences book series (SSOS, volume 131)


Surface plasmons are electromagnetic waves that propagate along the interface of a metal and a dielectric. In a surface plasmon light interacts with the free electrons of the metal which oscillate collectively in response to the applied field. Recently, nanometer-scale metallic devices have shown the potential to manipulate light at the subwavelength scale using surface plasmons. This could lead to photonic circuits of nanoscale dimensions.


Drude Model Dielectric Interface Plasmonic Device Numerical Simulation Technique Nonorthogonal Grid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Novotny, B. Hecht, D.W. Pohl: Interference of locally excited surface plasmons, J. Appl. Phys. 81 (4), 1798–1806 (1997).CrossRefGoogle Scholar
  2. 2.
    E. Prodan, P. Nordlander, N.J. Halas: Effects of dielectric screening on the optical properties of metallic nanoshells, Chem. Phys. Lett. 368 (1–2), 94–101 (2003).CrossRefGoogle Scholar
  3. 3.
    C.F. Bohren, D.R. Huffman: Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).Google Scholar
  4. 4.
    E.D. Palik ed: Handbook of Optical Constants of Solids (Academic, New York, 1985).Google Scholar
  5. 5.
    A. Taflove: Computational Electrodynamics (Artech House, Boston, 1995).Google Scholar
  6. 6.
    A.D. Rakic, A.B. Djurisic, J.M. Elazar, M.L. Majewski: Optical properties of metallic films for vertical-cavity optoelectronic devices, Appl. Opt. 37 (22) 5271–5283 (1998).Google Scholar
  7. 7.
    W.L. Barnes, A. Dereux, T.W. Ebbesen: Surface plasmon subwavelength optics, Nature 424, 824–830 (2003).CrossRefGoogle Scholar
  8. 8.
    A. Vial, A.S. Grimault, D. Macias, D. Barchiesi, M.L. de la Chapelle: Improved analytical fit of gold dispersion: application to the modeling of extinction spectra with a finite-difference time-domain method, Phys. Rev. B 71 (8), 85416 (2005).CrossRefGoogle Scholar
  9. 9.
    J.C. Weeber, A. Dereux, C. Girard, J.R. Krenn, J.P. Goudonnet: Plasmon polaritons of metallic nanowires for controlling submicron propagation of light, Phys. Rev. B 60 (12), 9061–9068 (1999).CrossRefGoogle Scholar
  10. 10.
    J.A. Kong: Electromagnetic Wave Theory (Wiley, New York, 1990).Google Scholar
  11. 11.
    A.D. Yaghjian: Electric dyadic Green's functions in the source region. Proc. IEEE 68 (2), 248–263 (1980).CrossRefGoogle Scholar
  12. 12.
    J.P. Kottmann, O.J.F. Martin: Accurate solution of the volume integral equation for high-permittivity scatterers, IEEE Trans. Antennas Propagation 48 (11), 1719–1726 (2000).CrossRefGoogle Scholar
  13. 13.
    E.M. Purcell, C.R. Pennypacker: Scattering and absorption of light by nonspherical dielectric grains, Astrophys. J. 186 (2), 705–714 (1973).CrossRefGoogle Scholar
  14. 14.
    B.T. Draine, P.J. Flatau: Discrete-dipole approximation for scattering calculations, J. Opt. Soc. Am. A 11 (4), 1491–1499 (1994).CrossRefGoogle Scholar
  15. 15.
    J.D. Jackson: Classical Electrodynamics (Wiley, New York, 1999).Google Scholar
  16. 16.
    J. Jin: The Finite Element Method in Electromagnetics (Wiley, New York, 2002).Google Scholar
  17. 17.
    G. Veronis, R.W. Dutton, S. Fan: Method for sensitivity analysis of photonic crystal devices, Opt. Lett. 29 (19), 2288–2290 (2004).CrossRefGoogle Scholar
  18. 18.
    J.P. Berenger: A perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys. 114 (2), 185–200 (1994).CrossRefGoogle Scholar
  19. 19.
    J.A. Pereda, A. Vegas, A. Prieto: An improved compact 2D fullwave FDFD method for general guided wave structures, Microwave Opt. Technol. Lett. 38 (4), 331–335 (2003).CrossRefGoogle Scholar
  20. 20.
    D.A. Genov, A.K. Sarychev, V.M. Shalaev: Plasmon localization and local field distribution in metal-dielectric films, Phys. Rev. E 67 (5), 56611 (2003).CrossRefGoogle Scholar
  21. 21.
    J.L. Young, R.O. Nelson: A summary and systematic analysis of FDTD algorithms for linearly dispersive media. IEEE Antennas Propagation Mag. 43 (1), 61–77 (2001).CrossRefGoogle Scholar
  22. 22.
    M.N.O. Sadiku: Numerical Techniques in Electromagnetics (CRC Press, Boca Raton, 2001).Google Scholar
  23. 23.
    P. Berini, K. Wu: Modeling lossy anisotropic dielectric waveguides with the method of lines, IEEE Trans. Microwave Theory Tech. 44 (5), 749–759 (1996).CrossRefGoogle Scholar
  24. 24.
    C. Rockstuhl, M.G. Salt, H.P. Herzig: Application of the boundary-element method to the interaction of light with single and coupled metallic nanoparticles, J. Opt. Soc. Am. A 20 (10), 1969–1973 (2003).CrossRefGoogle Scholar
  25. 25.
    E. Moreno, D. Erni, C. Hafner, R. Vahldieck: Multiple multipole method with automatic multipole setting applied to the simulation of surface plasmons in metallic nanostructures, J. Opt. Soc. Am. A 19 (1), 101–111 (2002).CrossRefGoogle Scholar
  26. 26.
    D.M. Pozar: Microwave Engineering (Wiley, New York, 1998).Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

    • 1
    • 1
  1. 1.Ginzton LaboratoryStanford UniversityStanfordUSA

Personalised recommendations