Part of the Springer Series in Optical Sciences book series (SSOS, volume 131)


By definition, surface plasmons are the quanta of surface-charge-density oscillations, but the same terminology is commonly used for collective oscillations in the electron density at the surface of a metal. Because the surface charge oscillations are intimately coupled to electromagnetic fields, surface plasmons are polaritons. In the past, surface plasmons have attracted considerable attention due to their application in optical sensor devices. Because of their localized nature, surface plasmons have recently also been explored in integrated optical circuits and optical waveguides. However, one of the key properties of surface plasmons is the associated light localization, which can be explored for localized photon sources in optical spectroscopy and microscopy. Surface enhanced Raman scattering (SERS) is a prominent example of the latter application. Recently, it was demonstrated that the SERS effect can be spatially controlled with a laser-irradiated metal tip. This combination of SERS and microscopy provides high spatial resolution and simultaneous chemical information in the form of vibrational spectra.


Surface Enhance Raman Scattering Surface Plasmon Polaritons Leakage Radiation Aperture Probe Excite Surface Plasmon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Homola, S. S. Yee, G. Gauglitz: Surface plasmon resonance sensors: review, Sensors and Actuators B 54, 3 (1999).CrossRefGoogle Scholar
  2. 2.
    A. J. Haes, W. P. Hall, L. Chang, W. L. Klein, R. P. Van Duyne: A localized surface plasmon resonance biosensor: First steps toward an assay for Alzheimers disease, Nano Lett. 4, 1029 (2004).CrossRefGoogle Scholar
  3. 3.
    J. C. Weeber, A. Dereux, C. Girard, J. R. Krenn, J. P. Goudonnet: Plasmon polaritons of metallic nanowires for controlling submicron propagation of light, Phys. Rev. B 60, 9061 (1999).CrossRefGoogle Scholar
  4. 4.
    H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, F. R. Aussenegg: Two-dimensional optics with surface plasmon polaritons, Appl. Phys. Lett. 81, 1762 (2002).CrossRefGoogle Scholar
  5. 5.
    J. Wessel: Surface-enhanced optical microscopy, J. Opt. Soc. Am. B 2, 1538 (1985).CrossRefGoogle Scholar
  6. 6.
    L. Novotny, E. J. Sanchez, X. S. Xie: Near-field optical imaging using metal tips illuminated by higher-order Hermite-Gaussian beams, Ultramicroscopy 71, 21 (1998).CrossRefGoogle Scholar
  7. 7.
    A. Hartschuh, E. J. Sanchez, X. S. Xie, L. Novotny: High-resolution near-field Raman microscopy of single-walled carbon nanotubes, Phys. Rev. Lett. 90, 95503 (2003).CrossRefGoogle Scholar
  8. 8.
    L. Novotny, R. X. Bian, X. S. Xie: Theory of nanometric optical tweezers, Phys. Rev. Lett., 79, 645 (1997).CrossRefGoogle Scholar
  9. 9.
    B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, D. W. Pohl: Local excitation, scattering, and interference of surface plasmons, Phys. Rev. Lett. 77, 1889 (1996).CrossRefGoogle Scholar
  10. 10.
    D. McMullan: SPIE Milestone Series: Selected Papers on Near-field Optics, 172, 31 (2002).Google Scholar
  11. 11.
    E. H. Synge: A suggested model for extending microscopic resolution into the ultra-microscopic region, Phil. Mag. 6, 356 (1928).Google Scholar
  12. 12.
    W. Denk, D. W. Pohl: Near-field optics: microscopy with nanometer-size fields, J. Vac. Sci. Technol. B 9, 510 (1991).CrossRefGoogle Scholar
  13. 13.
    U. Ch. Fischer, D. W. Pohl: Observation of single-particle plasmons by near-field optical microscopy, Phys. Rev. Lett. 62, 458 (1989).CrossRefGoogle Scholar
  14. 14.
    F. Keilmann, R. Hillenbrand: Near-field microscopy by elastic light scattering from a tip, Phil. Trans. R. Soc. Lond. A 362, 787 (2004).CrossRefGoogle Scholar
  15. 15.
    E. J. Sanchez, L. Novotny, X. S. Xie: Near-field fluorescence microscopy based on two-photon excitation with metal tips, Phys. Rev. Lett. 82, 4014 (1999).CrossRefGoogle Scholar
  16. 16.
    L. Novotny, B. Hecht, D. W. Pohl: Interference of locally excited surface plasmons, J. Appl. Phys. 81, 1798 (1997).CrossRefGoogle Scholar
  17. 17.
    A. Bouhelier, Th. Huser, H. Tamaru, H. J. Güntherodt, D. W. Pohl: Plasmon transmissivity and reflectivity of narrow grooves in silver films, J. Microscopy 194, 571 (1999).CrossRefGoogle Scholar
  18. 18.
    A. Bouhelier, Th. Huser, H. Tamaru, H. J. Güntherodt, D. W. Pohl, F. Baida, D. Van Labeke: Plasmon optics of structured silver films, Phys. Rev. B 63, 155404 (2001).CrossRefGoogle Scholar
  19. 19.
    F. I. Baida, D. Van Labeke, A. Bouhelier, Th. Huser, D. W. Pohl: Propagation and diffraction of locally excited surface plasmons, J. Opt. Soc. Am. A 18, 6 (2001).CrossRefGoogle Scholar
  20. 20.
    C. J. Bouwkamp: On Bethe's theory of diffraction by small holes, Rep. Phys. 5, 321 (1950).Google Scholar
  21. 21.
    A. Otto: Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection, Z. Angew. Phys. 216, 398 (1968).Google Scholar
  22. 22.
    A. Bouhelier, G. P. Wiederrecht: Surface plasmon rainbow jets, Opt. Lett. 30, 884 (2005).CrossRefGoogle Scholar
  23. 23.
    A. Bouhelier, G. P. Wiederrecht: Excitation of broadband surface plasmon polaritons: Plasmonic continuum spectroscopy, Phys. Rev. B, 71, 195406 (2005).CrossRefGoogle Scholar
  24. 24.
    O. Sqalli, M. P. Bernal, P. Hoffmann, F. Marquis-Weible: Gold elliptical nanoantennas as probes for near field optical microscopy, Appl. Phys. Lett. 76, 2134 (2000).CrossRefGoogle Scholar
  25. 25.
    Th. Kalkbrenner, M. Ramstein, J. Mlynek, V. Sandoghdar: A single gold particle as a probe for apertureless scanning near-field optical microscopy, J. Microscopy 202, 72 (2001).CrossRefGoogle Scholar
  26. 26.
    H. G. Frey, F. Keilmann, A. Kriele, R. Guckenberger: Enhancing the resolution of scanning near-field optical microscopy by a metal tip grown on an aperture probe, Appl. Phys. Lett. 81, 5030 (2002).CrossRefGoogle Scholar
  27. 27.
    M. I. Stockman: Nanofocusing of optical energy in tapered plasmonic waveguides, Phys. Rev. Lett. 93, 137404 (2004).CrossRefGoogle Scholar
  28. 28.
    F. Keilmann: Surface polaritons propagation for scanning near-field optical microscopy applications, J. Microscopy 194, 567 (1999).CrossRefGoogle Scholar
  29. 29.
    L. Novotny, C. Hafner: Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function, Phys. Rev. E 50, 4094, (1994).CrossRefGoogle Scholar
  30. 30.
    G. Goubau: Surface waves and their application to transmission lines, J. Appl. Phys. 21, 1119 (1950).CrossRefGoogle Scholar
  31. 31.
    A. Bouhelier, J. Renger, M. R. Beversluis, L. Novotny: Plasmon-coupled tip-enhanced near-field optical microscopy, J. Microscopy 210, 220–224 (2003).CrossRefGoogle Scholar
  32. 32.
    L. Vaccaro, L. Aeschimann, U. Staufer, H. P. Herzig, R. Dändliker: Propagation of the electromagnetic field in fully coated near-field optical probes, Appl. Phys. Lett. 83, 584 (2003).CrossRefGoogle Scholar
  33. 33.
    A. J. Babadjanyan, N. L. Margaryan, Kh. V. Nerkararyan: Superfocusing of surface polaritons in the conical structure, J. Appl. Phys. 87, 3785 (2000).CrossRefGoogle Scholar
  34. 34.
    Ch. Hafner: The Generalized Multiple Multipole Technique for Computational Electromagnetics (Artech, Boston, 1990).Google Scholar
  35. 35.
    A. Bouhelier, M. Beversluis, A. Hartschuh, L. Novotny: Near-field second-harmonic generation induced by local field enhancement, Phys. Rev. Lett. 90, 13903 (2003).CrossRefGoogle Scholar
  36. 36.
    V. A. Markel, V. M. Shalaev, P. Zhang, W. Huynh, L. Tay, T. L. Haslett, M. Moskovits: Near-field optical spectroscopy of individual surface-plasmon modes in colloid clusters, Phys. Rev. B 59, 10903 (1999).CrossRefGoogle Scholar
  37. 37.
    M. R. Beversluis, A. Bouhelier, L. Novotny: Continuum generation from single gold nanostructures through near-field mediated intraband transitions, Phys. Rev. B. 68, 115433 (2003).CrossRefGoogle Scholar
  38. 38.
    G.T. Boyd, Z. H. Yu, Y. R. Shen: Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces, Phys. Rev. B 33, 7923 (1986).CrossRefGoogle Scholar
  39. 39.
    M. B. Mohamed, V. Volkov, S. Link, M. A. El-Sayed: The ‘lightning’ gold nanorods: fluorescence enhancement of over a million compared to the gold metal, Chem. Phys. Lett. 317, 517 (2000).CrossRefGoogle Scholar
  40. 40.
    A. Bouhelier, M. R. Beversluis, L. Novotny: Characterization of nanoplasmonic structures by locally excited photoluminescence, Appl. Phys. Lett. 83, 5041 (2003).CrossRefGoogle Scholar
  41. 41.
    A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, G. Wiederrecht: Surface Plasmon Characteristics of Tunable Photoluminescence in Single Gold Nanorods, Phys. Rev. Lett. 95, 267405 (2005).CrossRefGoogle Scholar
  42. 42.
    H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, J. X. Cheng: In vitro and in vivo two-photon luminescence imaging of single gold nanorods, Proc. Nat. Acad. Sci. 102, 10552 (2005).Google Scholar
  43. 43.
    A. Bouhelier, M. R. Beversluis, L. Novotny: Near-field scattering of longitudinal fields, Appl. Phys. Lett. 82, 4596 (2003).CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

    • 1
    • 2
  1. 1.Laboratoire de Physique de l’Université de BourgogneDijonFrance
  2. 2.The Institute of OpticsUniversity of RochesterRochesterUSA

Personalised recommendations